Do you want to publish a course? Click here

Congested Crowd Instance Localization with Dilated Convolutional Swin Transformer

89   0   0.0 ( 0 )
 Added by Junyu Gao
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Crowd localization is a new computer vision task, evolved from crowd counting. Different from the latter, it provides more precise location information for each instance, not just counting numbers for the whole crowd scene, which brings greater challenges, especially in extremely congested crowd scenes. In this paper, we focus on how to achieve precise instance localization in high-density crowd scenes, and to alleviate the problem that the feature extraction ability of the traditional model is reduced due to the target occlusion, the image blur, etc. To this end, we propose a Dilated Convolutional Swin Transformer (DCST) for congested crowd scenes. Specifically, a window-based vision transformer is introduced into the crowd localization task, which effectively improves the capacity of representation learning. Then, the well-designed dilated convolutional module is inserted into some different stages of the transformer to enhance the large-range contextual information. Extensive experiments evidence the effectiveness of the proposed methods and achieve state-of-the-art performance on five popular datasets. Especially, the proposed model achieves F1-measure of 77.5% and MAE of 84.2 in terms of localization and counting performance, respectively.



rate research

Read More

115 - Ze Liu , Jia Ning , Yue Cao 2021
The vision community is witnessing a modeling shift from CNNs to Transformers, where pure Transformer architectures have attained top accuracy on the major video recognition benchmarks. These video models are all built on Transformer layers that globally connect patches across the spatial and temporal dimensions. In this paper, we instead advocate an inductive bias of locality in video Transformers, which leads to a better speed-accuracy trade-off compared to previous approaches which compute self-attention globally even with spatial-temporal factorization. The locality of the proposed video architecture is realized by adapting the Swin Transformer designed for the image domain, while continuing to leverage the power of pre-trained image models. Our approach achieves state-of-the-art accuracy on a broad range of video recognition benchmarks, including on action recognition (84.9 top-1 accuracy on Kinetics-400 and 86.1 top-1 accuracy on Kinetics-600 with ~20x less pre-training data and ~3x smaller model size) and temporal modeling (69.6 top-1 accuracy on Something-Something v2). The code and models will be made publicly available at https://github.com/SwinTransformer/Video-Swin-Transformer.
The mainstream crowd counting methods usually utilize the convolution neural network (CNN) to regress a density map, requiring point-level annotations. However, annotating each person with a point is an expensive and laborious process. During the testing phase, the point-level annotations are not considered to evaluate the counting accuracy, which means the point-level annotations are redundant. Hence, it is desirable to develop weakly-supervised counting methods that just rely on count level annotations, a more economical way of labeling. Current weakly-supervised counting methods adopt the CNN to regress a total count of the crowd by an image-to-count paradigm. However, having limited receptive fields for context modeling is an intrinsic limitation of these weakly-supervised CNN-based methods. These methods thus can not achieve satisfactory performance, limited applications in the real-word. The Transformer is a popular sequence-to-sequence prediction model in NLP, which contains a global receptive field. In this paper, we propose TransCrowd, which reformulates the weakly-supervised crowd counting problem from the perspective of sequence-to-count based on Transformer. We observe that the proposed TransCrowd can effectively extract the semantic crowd information by using the self-attention mechanism of Transformer. To the best of our knowledge, this is the first work to adopt a pure Transformer for crowd counting research. Experiments on five benchmark datasets demonstrate that the proposed TransCrowd achieves superior performance compared with all the weakly-supervised CNN-based counting methods and gains highly competitive counting performance compared with some popular fully-supervised counting methods. Code is available at https://github.com/dk-liang/TransCrowd.
Automatic medical image segmentation has made great progress benefit from the development of deep learning. However, most existing methods are based on convolutional neural networks (CNNs), which fail to build long-range dependencies and global context connections due to the limitation of receptive field in convolution operation. Inspired by the success of Transformer in modeling the long-range contextual information, some researchers have expended considerable efforts in designing the robust variants of Transformer-based U-Net. Moreover, the patch division used in vision transformers usually ignores the pixel-level intrinsic structural features inside each patch. To alleviate these problems, we propose a novel deep medical image segmentation framework called Dual Swin Transformer U-Net (DS-TransUNet), which might be the first attempt to concurrently incorporate the advantages of hierarchical Swin Transformer into both encoder and decoder of the standard U-shaped architecture to enhance the semantic segmentation quality of varying medical images. Unlike many prior Transformer-based solutions, the proposed DS-TransUNet first adopts dual-scale encoder subnetworks based on Swin Transformer to extract the coarse and fine-grained feature representations of different semantic scales. As the core component for our DS-TransUNet, a well-designed Transformer Interactive Fusion (TIF) module is proposed to effectively establish global dependencies between features of different scales through the self-attention mechanism. Furthermore, we also introduce the Swin Transformer block into decoder to further explore the long-range contextual information during the up-sampling process. Extensive experiments across four typical tasks for medical image segmentation demonstrate the effectiveness of DS-TransUNet, and show that our approach significantly outperforms the state-of-the-art methods.
Transformer models have recently attracted much interest from computer vision researchers and have since been successfully employed for several problems traditionally addressed with convolutional neural networks. At the same time, image synthesis using generative adversarial networks (GANs) has drastically improved over the last few years. The recently proposed TransGAN is the first GAN using only transformer-based architectures and achieves competitive results when compared to convolutional GANs. However, since transformers are data-hungry architectures, TransGAN requires data augmentation, an auxiliary super-resolution task during training, and a masking prior to guide the self-attention mechanism. In this paper, we study the combination of a transformer-based generator and convolutional discriminator and successfully remove the need of the aforementioned required design choices. We evaluate our approach by conducting a benchmark of well-known CNN discriminators, ablate the size of the transformer-based generator, and show that combining both architectural elements into a hybrid model leads to better results. Furthermore, we investigate the frequency spectrum properties of generated images and observe that our model retains the benefits of an attention based generator.
Image restoration is a long-standing low-level vision problem that aims to restore high-quality images from low-quality images (e.g., downscaled, noisy and compressed images). While state-of-the-art image restoration methods are based on convolutional neural networks, few attempts have been made with Transformers which show impressive performance on high-level vision tasks. In this paper, we propose a strong baseline model SwinIR for image restoration based on the Swin Transformer. SwinIR consists of three parts: shallow feature extraction, deep feature extraction and high-quality image reconstruction. In particular, the deep feature extraction module is composed of several residual Swin Transformer blocks (RSTB), each of which has several Swin Transformer layers together with a residual connection. We conduct experiments on three representative tasks: image super-resolution (including classical, lightweight and real-world image super-resolution), image denoising (including grayscale and color image denoising) and JPEG compression artifact reduction. Experimental results demonstrate that SwinIR outperforms state-of-the-art methods on different tasks by $textbf{up to 0.14$sim$0.45dB}$, while the total number of parameters can be reduced by $textbf{up to 67%}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا