Do you want to publish a course? Click here

Choice number of Kneser graphs

192   0   0.0 ( 0 )
 Added by Andrey Kupavskii
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this short note, we show that for any $epsilon >0$ and $k<n^{0.5-epsilon}$ the choice number of the Kneser graph $KG_{n,k}$ is $Theta (nlog n)$.



rate research

Read More

We show that any proper coloring of a Kneser graph $KG_{n,k}$ with $n-2k+2$ colors contains a trivial color (i.e., a color consisting of sets that all contain a fixed element), provided $n>(2+epsilon)k^2$, where $epsilonto 0$ as $kto infty$. This bound is essentially tight.
124 - Rongxing Xu , Xuding Zhu 2020
A graph $G$ is called $3$-choice critical if $G$ is not $2$-choosable but any proper subgraph is $2$-choosable. A graph $G$ is strongly fractional $r$-choosable if $G$ is $(a,b)$-choosable for all positive integers $a,b$ for which $a/b ge r$. The strong fractional choice number of $G$ is $ch_f^s(G) = inf {r: G $ is strongly fractional $r$-choosable$}$. This paper determines the strong fractional choice number of all $3$-choice critical graphs.
Let $D$ be an oriented graph. The inversion of a set $X$ of vertices in $D$ consists in reversing the direction of all arcs with both ends in $X$. The inversion number of $D$, denoted by ${rm inv}(D)$, is the minimum number of
We focus on counting the number of labeled graphs on $n$ vertices and treewidth at most $k$ (or equivalently, the number of labeled partial $k$-trees), which we denote by $T_{n,k}$. So far, only the particular cases $T_{n,1}$ and $T_{n,2}$ had been studied. We show that $$ left(c cdot frac{kcdot 2^k cdot n}{log k} right)^n cdot 2^{-frac{k(k+3)}{2}} cdot k^{-2k-2} leq T_{n,k} leq left(k cdot 2^k cdot nright)^n cdot 2^{-frac{k(k+1)}{2}} cdot k^{-k}, $$ for $k > 1$ and some explicit absolute constant $c > 0$. The upper bound is an immediate consequence of the well-known number of labeled $k$-trees, while the lower bound is obtained from an explicit algorithmic construction. It follows from this construction that both bounds also apply to graphs of pathwidth and proper-pathwidth at most $k$.
We show that the cop number of every generalized Petersen graph is at most 4. The strategy is to play a modified game of cops and robbers on an infinite cyclic covering space where the objective is to capture the robber or force the robber towards an end of the infinite graph. We prove that finite isometric subtrees are 1-guardable and apply this to determine the exact cop number of some families of generalized Petersen graphs. We also extend these ideas to prove that the cop number of any connected I-graph is at most 5.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا