Do you want to publish a course? Click here

Sensitivity to longitudinal vector boson scattering in semi-leptonic final states at the HL-LHC

152   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Longitudinal vector boson scattering provides an important probe of electroweak symmetry breaking, bringing sensitivity to physics beyond the Standard Model as well as constraining properties of the Higgs boson. It is a difficult process to study due to the small production cross section and challenging separation of the different polarization states. We study the sensitivity to longitudinal $WV$ vector boson scattering at the High-Luminosity Large Hadron Collider in semi-leptonic final states. While these are characterized by larger background contributions compared to fully leptonic final states, they benefit from a higher signal cross section due to the enhanced branching fraction. We determine the polarization through full reconstruction of the event kinematics using the $W$ boson mass constraint and through the use of jet substructure. We show that with these techniques sensitivities around three standard deviations at the HL-LHC are achievable, which makes this channel competitive with its fully leptonic counterparts.



rate research

Read More

60 - V. Cavaliere , R. Les , T. Nitta 2018
This note presents the prospects of searches for new heavy resonances decaying to diboson (WW) and measurements of electroweak WW/WZ production via vector boson scattering (VBS) in association with a high-mass dijet system in the $ell u qq$ final states ($Wtoell u$, $W/Zto qq$). The prospects are presented for an integrated luminosity of 15 ab$^{-1}$ of proton-proton ($pp$) collisions at $sqrt{s}=27$ TeV with an ATLAS-like detector simulated in the Delphes framework. The cross-section measurement of the electroweak $WW/WZ$ production in VBS processes is expected to reach the precision of $sim$2-3%, improving the expected accuracy at the HL-LHC by a factor of 2. Prospects are presented also for the separation of the longitudinal component of the electroweak $WW/WZ$ production, showing the expected significance of $sim3sigma$ is reached with 3 ab$^{-1}$ for the single $ell u qq$ channel and $sim5sigma$ for all the semi-leptonic channels combined. The diboson resonance searches are interpreted for sensitivity to a simplified phenomenological model with a heavy gauge boson. With 15 ab$^{-1}$ of $pp$ data, the discovery reach for the new resonance is extended to 8 TeV.
We present a phenomenology study on central exclusive production of $W^+W^-$ boson pairs in proton-proton collisions at the Large Hadron Collider at 14 TeV using the forward proton detectors, such as the ATLAS Forward Proton or the CMS-TOTEM Precision Proton Spectrometer detectors. Final states where at least one of the $W$ bosons decay hadronically in a large-radius jet are considered. The latter extends previous efforts that consider solely leptonic final states. A measurement of exclusive $W^+W^-$ also allows us to further constrain anomalous quartic gauge boson interactions between photons and $W$ bosons. Expected limits on anomalous quartic gauge couplings $a_{0,C}^W$ associated to dimension-six effective operators are derived for the hadronic, semi-leptonic, and leptonic final states. It is found that the couplings can be probed down to one-dimensional values of $a_{0}^W = 3.7times 10^{-7}$ GeV$^{-2}$ and $a_{C}^W = 9.2 times 10^{-7}$ GeV$^{-2}$ at $95%$ CL at an integrated luminosity of 300 fb$^{-1}$ by combining all final states, compared to values of about $a_{0}^W = 4times 10^{-6}$ GeV$^{-2}$ and $a_{C}^W = 1times 10^{-5}$ GeV$^{-2}$ at 95% CL expected for the leptonic channel alone.
Vector-boson scattering (VBS) processes probe the innermost structure of electroweak interactions in the Standard Model, and provide a unique sensitivity for new physics phenomena affecting the gauge sector. In this review, we report on the salient aspects of this class of processes, both from the theory and experimental point of view. We start by discussing recent achievements relevant for their theoretical description, some of which have set important milestones in improving the precision and accuracy of the corresponding simulations. We continue by covering the development of experimental techniques aimed at detecting these rare processes and improving the signal sensitivity over large backgrounds. We then summarise the details of the most relevant VBS signatures and review the related measurements available to date, along with their comparison with Standard-Model predictions. We conclude by discussing the perspective at the upcoming Large Hadron Collider runs and at future hadron facilities.
At the Large Hadron Collider (LHC), the most abundant processes which take place in proton-proton collisions are the generation of multijet events. These final states rely heavily on phenomenological models and perturbative corrections which are not fully understood, and yet for many physics searches at the LHC, multijet processes are an important background to deal with. It is therefore imperative that the modelling of multijet processes is better understood and improved. For this reason, a study has been done with several state-of-the-art Monte Carlo event generators, and their predictions are tested against ATLAS data using the Rivet framework. The results display a mix of agreement and disagreement between the predictions and data, depending on which variables are studied. Several points for improvement on the modelling of multijet processes are stated and discussed.
The Large Hadron electron Collider (LHeC) is designed to move the field of deep inelastic scattering (DIS) to the energy and intensity frontier of particle physics. Exploiting energy recovery technology, it collides a novel, intense electron beam with a proton or ion beam from the High Luminosity--Large Hadron Collider (HL-LHC). The accelerator and interaction region are designed for concurrent electron-proton and proton-proton operation. This report represents an update of the Conceptual Design Report (CDR) of the LHeC, published in 2012. It comprises new results on parton structure of the proton and heavier nuclei, QCD dynamics, electroweak and top-quark physics. It is shown how the LHeC will open a new chapter of nuclear particle physics in extending the accessible kinematic range in lepton-nucleus scattering by several orders of magnitude. Due to enhanced luminosity, large energy and the cleanliness of the hadronic final states, the LHeC has a strong Higgs physics programme and its own discovery potential for new physics. Building on the 2012 CDR, the report represents a detailed updated design of the energy recovery electron linac (ERL) including new lattice, magnet, superconducting radio frequency technology and further components. Challenges of energy recovery are described and the lower energy, high current, 3-turn ERL facility, PERLE at Orsay, is presented which uses the LHeC characteristics serving as a development facility for the design and operation of the LHeC. An updated detector design is presented corresponding to the acceptance, resolution and calibration goals which arise from the Higgs and parton density function physics programmes. The paper also presents novel results on the Future Circular Collider in electron-hadron mode, FCC-eh, which utilises the same ERL technology to further extend the reach of DIS to even higher centre-of-mass energies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا