Do you want to publish a course? Click here

Planning of Power Grasps Using Infinite Program Under Complementary Constraints

93   0   0.0 ( 0 )
 Added by Duo Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We propose an optimization-based approach to plan power grasps. Central to our method is a reformulation of grasp planning as an infinite program under complementary constraints (IPCC), which allows contacts to happen between arbitrary pairs of points on the object and the robot gripper. We show that IPCC can be reduced to a conventional finite-dimensional nonlinear program (NLP) using a kernel-integral relaxation. Moreover, the values and Jacobian matrices of the kernel-integral can be evaluated efficiently using a modified Fast Multipole Method (FMM). We further guarantee that the planned grasps are collision-free using primal barrier penalties. We demonstrate the effectiveness, robustness, and efficiency of our grasp planner on a row of challenging 3D objects and high-DOF grippers, such as Barrett Hand and Shadow Hand, where our method achieves superior grasp qualities over competitors.

rate research

Read More

For large-scale tasks, coverage path planning (CPP) can benefit greatly from multiple robots. In this paper, we present an efficient algorithm MSTC* for multi-robot coverage path planning (mCPP) based on spiral spanning tree coverage (Spiral-STC). Our algorithm incorporates strict physical constraints like terrain traversability and material load capacity. We compare our algorithm against the state-of-the-art in mCPP for regular grid maps and real field terrains in simulation environments. The experimental results show that our method significantly outperforms existing spiral-STC based mCPP methods. Our algorithm can find a set of well-balanced workload distributions for all robots and therefore, achieve the overall minimum time to complete the coverage.
Kinodynamic Motion Planning (KMP) is to find a robot motion subject to concurrent kinematics and dynamics constraints. To date, quite a few methods solve KMP problems and those that exist struggle to find near-optimal solutions and exhibit high computational complexity as the planning space dimensionality increases. To address these challenges, we present a scalable, imitation learning-based, Model-Predictive Motion Planning Networks framework that quickly finds near-optimal path solutions with worst-case theoretical guarantees under kinodynamic constraints for practical underactuated systems. Our framework introduces two algorithms built on a neural generator, discriminator, and a parallelizable Model Predictive Controller (MPC). The generator outputs various informed states towards the given target, and the discriminator selects the best possible subset from them for the extension. The MPC locally connects the selected informed states while satisfying the given constraints leading to feasible, near-optimal solutions. We evaluate our algorithms on a range of cluttered, kinodynamically constrained, and underactuated planning problems with results indicating significant improvements in computation times, path qualities, and success rates over existing methods.
We consider the problem of designing policies for partially observable Markov decision processes (POMDPs) with dynamic coherent risk objectives. Synthesizing risk-averse optimal policies for POMDPs requires infinite memory and thus undecidable. To overcome this difficulty, we propose a method based on bounded policy iteration for designing stochastic but finite state (memory) controllers, which takes advantage of standard convex optimization methods. Given a memory budget and optimality criterion, the proposed method modifies the stochastic finite state controller leading to sub-optimal solutions with lower coherent risk.
59 - Jingwen Zhang , Xuan Lin , 2021
In order to achieve autonomous vertical wall climbing, the transition phase from the ground to the wall requires extra consideration inevitably. This paper focuses on the contact sequence planner to transition between flat terrain and vertical surfaces for multi-limbed climbing robots. To overcome the transition phase, it requires planning both multi-contact and contact wrenches simultaneously which makes it difficult. Instead of using a predetermined contact sequence, we consider various motions on different environment setups via modeling contact constraints and limb switchability as complementarity conditions. Two safety factors for toe sliding and motor over-torque are the main tuning parameters for different contact sequences. By solving as a nonlinear program (NLP), we can generate several feasible sequences of foot placements and contact forces to avoid failure cases. We verified feasibility with demonstrations on the hardware SiLVIA, a six-legged robot capable of vertically climbing between two walls by bracing itself in-between using only friction.
This paper considers safe robot mission planning in uncertain dynamical environments. This problem arises in applications such as surveillance, emergency rescue, and autonomous driving. It is a challenging problem due to modeling and integrating dynamical uncertainties into a safe planning framework, and finding a solution in a computationally tractable way. In this work, we first develop a probabilistic model for dynamical uncertainties. Then, we provide a framework to generate a path that maximizes safety for complex missions by incorporating the uncertainty model. We also devise a Monte Carlo method to obtain a safe path efficiently. Finally, we evaluate the performance of our approach and compare it to potential alternatives in several case studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا