Do you want to publish a course? Click here

Bayesian analysis of the prevalence bias: learning and predicting from imbalanced data

80   0   0.0 ( 0 )
 Added by Loic Le Folgoc
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Datasets are rarely a realistic approximation of the target population. Say, prevalence is misrepresented, image quality is above clinical standards, etc. This mismatch is known as sampling bias. Sampling biases are a major hindrance for machine learning models. They cause significant gaps between model performance in the lab and in the real world. Our work is a solution to prevalence bias. Prevalence bias is the discrepancy between the prevalence of a pathology and its sampling rate in the training dataset, introduced upon collecting data or due to the practioner rebalancing the training batches. This paper lays the theoretical and computational framework for training models, and for prediction, in the presence of prevalence bias. Concretely a bias-corrected loss function, as well as bias-corrected predictive rules, are derived under the principles of Bayesian risk minimization. The loss exhibits a direct connection to the information gain. It offers a principled alternative to heuristic training losses and complements test-time procedures based on selecting an operating point from summary curves. It integrates seamlessly in the current paradigm of (deep) learning using stochastic backpropagation and naturally with Bayesian models.



rate research

Read More

Context: Conducting experiments is central to research machine learning research to benchmark, evaluate and compare learning algorithms. Consequently it is important we conduct reliable, trustworthy experiments. Objective: We investigate the incidence of errors in a sample of machine learning experiments in the domain of software defect prediction. Our focus is simple arithmetical and statistical errors. Method: We analyse 49 papers describing 2456 individual experimental results from a previously undertaken systematic review comparing supervised and unsupervised defect prediction classifiers. We extract the confusion matrices and test for relevant constraints, e.g., the marginal probabilities must sum to one. We also check for multiple statistical significance testing errors. Results: We find that a total of 22 out of 49 papers contain demonstrable errors. Of these 7 were statistical and 16 related to confusion matrix inconsistency (one paper contained both classes of error). Conclusions: Whilst some errors may be of a relatively trivial nature, e.g., transcription errors their presence does not engender confidence. We strongly urge researchers to follow open science principles so errors can be more easily be detected and corrected, thus as a community reduce this worryingly high error rate with our computational experiments.
Hyperkalemia is a potentially life-threatening condition that can lead to fatal arrhythmias. Early identification of high risk patients can inform clinical care to mitigate the risk. While hyperkalemia is often a complication of acute kidney injury (AKI), it also occurs in the absence of AKI. We developed predictive models to identify intensive care unit (ICU) patients at risk of developing hyperkalemia by using the Medical Information Mart for Intensive Care (MIMIC) and the eICU Collaborative Research Database (eICU-CRD). Our methodology focused on building multiple models, optimizing for interpretability through model selection, and simulating various clinical scenarios. In order to determine if our models perform accurately on patients with and without AKI, we evaluated the following clinical cases: (i) predicting hyperkalemia after AKI within 14 days of ICU admission, (ii) predicting hyperkalemia within 14 days of ICU admission regardless of AKI status, and compared different lead times for (i) and (ii). Both clinical scenarios were modeled using logistic regression (LR), random forest (RF), and XGBoost. Using observations from the first day in the ICU, our models were able to predict hyperkalemia with an AUC of (i) 0.79, 0.81, 0.81 and (ii) 0.81, 0.85, 0.85 for LR, RF, and XGBoost respectively. We found that 4 out of the top 5 features were consistent across the models. AKI stage was significant in the models that included all patients with or without AKI, but not in the models which only included patients with AKI. This suggests that while AKI is important for hyperkalemia, the specific stage of AKI may not be as important. Our findings require further investigation and confirmation.
While tasks could come with varying the number of instances and classes in realistic settings, the existing meta-learning approaches for few-shot classification assume that the number of instances per task and class is fixed. Due to such restriction, they learn to equally utilize the meta-knowledge across all the tasks, even when the number of instances per task and class largely varies. Moreover, they do not consider distributional difference in unseen tasks, on which the meta-knowledge may have less usefulness depending on the task relatedness. To overcome these limitations, we propose a novel meta-learning model that adaptively balances the effect of the meta-learning and task-specific learning within each task. Through the learning of the balancing variables, we can decide whether to obtain a solution by relying on the meta-knowledge or task-specific learning. We formulate this objective into a Bayesian inference framework and tackle it using variational inference. We validate our Bayesian Task-Adaptive Meta-Learning (Bayesian TAML) on multiple realistic task- and class-imbalanced datasets, on which it significantly outperforms existing meta-learning approaches. Further ablation study confirms the effectiveness of each balancing component and the Bayesian learning framework.
Adverse drug-drug interactions (DDIs) remain a leading cause of morbidity and mortality. Identifying potential DDIs during the drug design process is critical for patients and society. Although several computational models have been proposed for DDI prediction, there are still limitations: (1) specialized design of drug representation for DDI predictions is lacking; (2) predictions are based on limited labelled data and do not generalize well to unseen drugs or DDIs; and (3) models are characterized by a large number of parameters, thus are hard to interpret. In this work, we develop a ChemicAl SubstrucTurE Representation (CASTER) framework that predicts DDIs given chemical structures of drugs.CASTER aims to mitigate these limitations via (1) a sequential pattern mining module rooted in the DDI mechanism to efficiently characterize functional sub-structures of drugs; (2) an auto-encoding module that leverages both labelled and unlabelled chemical structure data to improve predictive accuracy and generalizability; and (3) a dictionary learning module that explains the prediction via a small set of coefficients which measure the relevance of each input sub-structures to the DDI outcome. We evaluated CASTER on two real-world DDI datasets and showed that it performed better than state-of-the-art baselines and provided interpretable predictions.
Motivation: Histone modifications are among the most important factors that control gene regulation. Computational methods that predict gene expression from histone modification signals are highly desirable for understanding their combinatorial effects in gene regulation. This knowledge can help in developing epigenetic drugs for diseases like cancer. Previous studies for quantifying the relationship between histone modifications and gene expression levels either failed to capture combinatorial effects or relied on multiple methods that separate predictions and combinatorial analysis. This paper develops a unified discriminative framework using a deep convolutional neural network to classify gene expression using histone modification data as input. Our system, called DeepChrome, allows automatic extraction of complex interactions among important features. To simultaneously visualize the combinatorial interactions among histone modifications, we propose a novel optimization-based technique that generates feature pattern maps from the learnt deep model. This provides an intuitive description of underlying epigenetic mechanisms that regulate genes. Results: We show that DeepChrome outperforms state-of-the-art models like Support Vector Machines and Random Forests for gene expression classification task on 56 different cell-types from REMC database. The output of our visualization technique not only validates the previous observations but also allows novel insights about combinatorial interactions among histone modification marks, some of which have recently been observed by experimental studies.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا