Do you want to publish a course? Click here

An efficient hit finding algorithm for Baikal-GVD muon reconstruction

134   0   0.0 ( 0 )
 Added by Alexander Avrorin
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Baikal-GVD is a large scale neutrino telescope being constructed in Lake Baikal. The majority of signal detected by the telescope are noise hits, caused primarily by the luminescence of the Baikal water. Separating noise hits from the hits produced by Cherenkov light emitted from the muon track is a challenging part of the muon event reconstruction. We present an algorithm that utilizes a known directional hit causality criterion to contruct a graph of hits and then use a clique-based technique to select the subset of signal hits.The algorithm was tested on realistic detector Monte-Carlo simulation for a wide range of muon energies and has proved to select a pure sample of PMT hits from Cherenkov photons while retaining above 90% of original signal.



rate research

Read More

The Baikal Gigaton Volume Detector (Baikal-GVD) is a km$^3$-scale neutrino detector currently under construction in Lake Baikal, Russia. The detector consists of several thousand optical sensors arranged on vertical strings, with 36 sensors per string. The strings are grouped into clusters of 8 strings each. Each cluster can operate as a stand-alone neutrino detector. The detector layout is optimized for the measurement of astrophysical neutrinos with energies of $sim$ 100 TeV and above. Events resulting from charged current interactions of muon (anti-)neutrinos will have a track-like topology in Baikal-GVD. A fast $chi^2$-based reconstruction algorithm has been developed to reconstruct such track-like events. The algorithm has been applied to data collected in 2019 from the first five operational clusters of Baikal-GVD, resulting in observations of both downgoing atmospheric muons and upgoing atmospheric neutrinos. This serves as an important milestone towards experimental validation of the Baikal-GVD design. This analysis is limited to single-cluster data, favoring nearly-vertical tracks.
Baikal-GVD is a kilometer scale neutrino telescope currently under construction in Lake Baikal. Due to water currents in Lake Baikal, individual photomultiplier housings are mobile and can drift away from their initial position. In order to accurately determine the coordinates of the photomultipliers, the telescope is equipped with an acoustic positioning system. The system consists of a network of acoustic modems, installed along the telescope strings and uses acoustic trilateration to determine the coordinates of individual modems. This contribution discusses the current state of the positioning in Baikal-GVD, including the recent upgrade to the acoustic modem polling algorithm.
Baikal-GVD is a km$^3$-scale neutrino telescope being constructed in Lake Baikal. Muon and partially tau (anti)neutrino interactions near the detector through the W$^{pm}$-boson exchange are accompanied by muon tracks. Reconstructed direction of the track is arguably the most precise probe of the neutrino direction attainable in Cerenkov neutrino telescopes. Muon reconstruction techniques adopted by Baikal-GVD are discussed in the present report. Performance of the muon reconstruction is studied using realistic Monte Carlo simulation of the detector. The algorithms are applied to real data from Baikal-GVD and the results are compared with simulations. The performance of the neutrino selection based on a boosted decision tree classifier is discussed.
A cubic kilometer scale neutrino telescope Baikal-GVD is currently under construction in Lake Baikal. Baikal-GVD is designed to detect Cerenkov radiation from products of astrophysical neutrino interactions with Baikal water by a lattice of photodetectors submerged between the depths of 1275 and 730 m. The detector components are mounted on flexible strings and can drift from their initial positions upwards to tens of meters. This introduces positioning uncertainty which translates into a timing error for Cerenkov signal registration. A spatial positioning system has been developed to resolve this issue. In this contribution, we present the status of this system, results of acoustic measurements and an estimate of positioning error for an individual component.
In April 2019, the Baikal-GVD collaboration finished the installation of the fourth and fifth clusters of the neutrino telescope Baikal-GVD. Momentarily, 1440 Optical Modules (OM) are installed in the largest and deepest freshwater lake in the world, Lake Baikal, instrumenting 0.25 cubic km of sensitive volume. The Baikal-GVD is thus the largest neutrino telescope on the Northern Hemisphere. The first phase of the detector construction is going to be finished in 2021 with 9 clusters, 2592 OMs in total, however the already installed clusters are stand-alone units which are independently operational and taking data from their commissioning. Huge number of channels as well as strict requirements for the precision of the time and charge calibration (ns, p.e.) make calibration procedures vital and very complex tasks. The inter cluster time calibration is performed with numerous calibration systems. The charge calibration is carried out with a Single Photo-Electron peak. The various data acquired during the last three years in regular and special calibration runs validate successful performance of the calibration systems and of the developed calibration techniques. The precision of the charge calibration has been improved and the time dependence of the obtained calibration parameters have been cross-checked. The multiple calibration sources verified a 1.5 - 2.0 ns precision of the in-situ time calibrations. The time walk effect has been studied in detail with in situ specialized calibration runs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا