In the slice Hardy space over the unit ball of quaternions, we introduce the slice hyperbolic backward shift operators $mathcal S_a$ based on the identity $$f=e_alangle f, e_arangle+B_{a}*mathcal S_a f,$$ where $e_a$ denotes the slice normalized Szego kernel and $ B_a $ the slice Mobius transformation. By iterating the identity above, the greedy algorithm gives rise to the slice adaptive Fourier decomposition via maximum selection principle. This leads to the slice Takenaka-Malmquist orthonormal system.