No Arabic abstract
Most fairness assumptions used for verifying liveness properties are criticised for being too strong or unrealistic. On the other hand, justness, arguably the minimal fairness assumption required for the verification of liveness properties, is not preserved by classical semantic equivalences, such as strong bisimilarity. To overcome this deficiency, we introduce a finer alternative to strong bisimilarity, called enabling preserving bisimilarity. We prove that this equivalence is justness-preserving and a congruence for all standard operators, including parallel composition.
With the previous notions of bisimulation presented in literature, to check if two quantum processes are bisimilar, we have to instantiate the free quantum variables of them with arbitrary quantum states, and verify the bisimilarity of resultant configurations. This makes checking bisimilarity infeasible from an algorithmic point of view because quantum states constitute a continuum. In this paper, we introduce a symbolic operational semantics for quantum processes directly at the quantum operation level, which allows us to describe the bisimulation between quantum processes without resorting to quantum states. We show that the symbolic bisimulation defined here is equivalent to the open bisimulation for quantum processes in the previous work, when strong bisimulations are considered. An algorithm for checking symbolic ground bisimilarity is presented. We also give a modal logical characterisation for quantum bisimilarity based on an extension of Hennessy-Milner logic to quantum processes.
Quantum processes describe concurrent communicating systems that may involve quantum information. We propose a notion of open bisimulation for quantum processes and show that it provides both a sound and complete proof methodology for a natural extensional behavioural equivalence between quantum processes. We also give a modal characterisation of open bisimulation, by extending the Hennessy-Milner logic to a quantum setting.
Bisimulation metrics provide a robust and accurate approach to study the behavior of nondeterministic probabilistic processes. In this paper, we propose a logical characterization of bisimulation metrics based on a simple probabilistic variant of the Hennessy-Milner logic. Our approach is based on the novel notions of mimicking formulae and distance between formulae. The former are a weak version of the well known characteristic formulae and allow us to characterize also (ready) probabilistic simulation and probabilistic bisimilarity. The latter is a 1-bounded pseudometric on formulae that mirrors the Hausdorff and Kantorovich lifting the defining bisimilarity pseudometric. We show that the distance between two processes equals the distance between their own mimicking formulae.
We present a new distributed algorithm for state space minimization modulo branching bisimulation. Like its predecessor it uses signatures for refinement, but the refinement process and the signatures have been optimized to exploit the fact that the input graph contains no tau-loops. The optimization in the refinement process is meant to reduce both the number of iterations needed and the memory requirements. In the former case we cannot prove that there is an improvement, but our experiments show that in many cases the number of iterations is smaller. In the latter case, we can prove that the worst case memory use of the new algorithm is linear in the size of the state space, whereas the old algorithm has a quadratic upper bound. The paper includes a proof of correctness of the new algorithm and the results of a number of experiments that compare the performance of the old and the new algorithms.
In chemical reaction networks (CRNs) with stochastic semantics based on continuous-time Markov chains (CTMCs), the typically large populations of species cause combinatorially large state spaces. This makes the analysis very difficult in practice and represents the major bottleneck for the applicability of minimization techniques based, for instance, on lumpability. In this paper we present syntactic Markovian bisimulation (SMB), a notion of bisimulation developed in the Larsen-Skou style of probabilistic bisimulation, defined over the structure of a CRN rather than over its underlying CTMC. SMB identifies a lumpable partition of the CTMC state space a priori, in the sense that it is an equivalence relation over species implying that two CTMC states are lumpable when they are invariant with respect to the total population of species within the same equivalence class. We develop an efficient partition-refinement algorithm which computes the largest SMB of a CRN in polynomial time in the number of species and reactions. We also provide an algorithm for obtaining a quotient network from an SMB that induces the lumped CTMC directly, thus avoiding the generation of the state space of the original CRN altogether. In practice, we show that SMB allows significant reductions in a number of models from the literature. Finally, we study SMB with respect to the deterministic semantics of CRNs based on ordinary differential equations (ODEs), where each equation gives the time-course evolution of the concentration of a species. SMB implies forward CRN bisimulation, a recently developed behavioral notion of equivalence for the ODE semantics, in an analogous sense: it yields a smaller ODE system that keeps track of the sums of the solutions for equivalent species.