Do you want to publish a course? Click here

Holography from the Wheeler-DeWitt equation

55   0   0.0 ( 0 )
 Added by Olga Papadoulaki
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In a theory of quantum gravity, states can be represented as wavefunctionals that assign an amplitude to a given configuration of matter fields and the metric on a spatial slice. These wavefunctionals must obey a set of constraints as a consequence of the diffeomorphism invariance of the theory, the most important of which is known as the Wheeler-DeWitt equation. We study these constraints perturbatively by expanding them to leading nontrivial order in Newtons constant about a background AdS spacetime. We show that, even within perturbation theory, any wavefunctional that solves these constraints must have specific correlations between a component of the metric at infinity and energetic excitations of matter fields or transverse-traceless gravitons. These correlations disallow strictly localized excitations. We prove perturbatively that two states or two density matrices that coincide at the boundary for an infinitesimal interval of time must coincide everywhere in the bulk. This analysis establishes a perturbative version of holography for theories of gravity coupled to matter in AdS.



rate research

Read More

117 - Eyo Ita , Chopin Soo 2014
Exact solutions of the Wheeler-DeWitt equation of the full theory of four dimensional gravity of Lorentzian signature are obtained. They are characterized by Schrodinger wavefunctionals having support on 3-metrics of constant spatial scalar curvature, and thus contain two full physical field degrees of freedom in accordance with the Yamabe construction. These solutions are moreover Gaussians of minimum uncertainty and they are naturally associated with a rigged Hilbert space. In addition, in the limit the regulator is removed, exact 3-dimensional diffeomorphism and local gauge invariance of the solutions are recovered.
In this letter we use the Anti-de Sitter/Conformal Field Theory (AdS/CFT) correspondence to establish a set of old conjectures about symmetries in quantum gravity. These are that no global symmetries are possible, that internal gauge symmetries must come with dynamical objects that transform in all irreducible representations, and that internal gauge groups must be compact. These conjectures are not obviously true from a bulk perspective, they are nontrivial consequences of the non-perturbative consistency of the correspondence. More details of and background for these arguments are presented in an accompanying paper.
The Quantum Wheeler-DeWitt operator can be derived from an affine commutation relation via the affine group representation formalism for gravity, wherein a family of gauge-diffeomorphism invariant affine coherent states are constructed from a fiducial state. In this article, the role of the fiducial state is played by a regularized Gaussian peaked on densitized triad configurations corresponding to 3-metrics of constant spatial scalar curvature. The affine group manifold consists of points in the upper half plane, wherein each point is labeled by two local gravitational degrees of freedom from the Yamabe construction. From this viewpoint, here we show that the translational subgroup of affine coherent states constitute a set of exact solutions of the Wheeler-DeWitt equation. The affine translational parameter $b$ admits a physical interpretation analogous to a continuous plane wave energy spectrum, where the curvature constant $k$ plays the role of the energy. This result shows that the affine translational subgroup generates transformations in the curvature constant $k$ from the Yamabe problem, while $k$ is inert under the kinematic symmetries of gravity.
We reexamine the relationship between the path integral and canonical formulation of quantum general relativity. In particular, we present a formal derivation of the Wheeler-DeWitt equation from the path integral for quantum general relativity by way of boundary variations. One feature of this approach is that it does not require an explicit 3+1 splitting of spacetime in the bulk. For spacetimes with a spatial boundary, we show that the dependence of the transition amplitudes on spatial boundary conditions is determined by a Wheeler-DeWitt equation for the spatial boundary surface. We find that variations in the induced metric at the spatial boundary can be used to describe time evolution---time evolution in quantum general relativity is therefore governed by boundary conditions on the gravitational field at the spatial boundary. We then briefly describe a formalism for computing the dependence of transition amplitudes on spatial boundary conditions. Finally, we argue that for nonsmooth boundaries, meaningful transition amplitudes must depend on boundary conditions at the joint surfaces.
Plasma balls are droplets of deconfined plasma surrounded by a confining vacuum. We present the first holographic simulation of their real-time evolution via the dynamics of localized, finite-energy black holes in the five-dimensional anti-de Sitter (AdS) soliton background. The dual gauge theory is four-dimensional, N=4 super Yang-Mills compactified on a circle with supersymmetry-breaking boundary conditions. We consider horizonless initial data sourced by a massless scalar field. Prompt scalar field collapse then produces an excited black hole at the bottom of the geometry together with gravitational and scalar radiation. The radiation disperses to infinity in the noncompact directions and corresponds to particle production in the dual gauge theory. The black hole evolves toward the dual of an equilibrium plasma ball on a time scale longer than naively expected. This feature is a direct consequence of confinement and is caused by long-lived, periodic disturbances bouncing between the bottom of the AdS soliton and the AdS boundary.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا