Do you want to publish a course? Click here

Search for relativistic Magnetic Monopoles with ten years of the ANTARES detector data

188   0   0.0 ( 0 )
 Added by Jihad Boumaaza
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The presented study is an updated search for magnetic monopoles using data taken with the ANTARES neutrino telescope over a period of 10 years (January 2008 to December 2017). In accordance with some grand unification theories, magnetic monopoles were created during the phase of symmetry breaking in the early Universe, and accelerated by galactic magnetic fields. As a consequence of their high energy, they could cross the Earth and emit a significant signal in a Cherenkov-based telescope like ANTARES, for appropriate mass and velocity ranges. This analysis uses a run-by-run simulation strategy, as well as a new simulation of magnetic monopoles taking into account the Kasama, Yang and Goldhaber model for their cross section with matter. The results obtained for relativistic magnetic monopoles with velocity higher than 0.817c, where c is the speed of light in vacuum, are presented.



rate research

Read More

A search for magnetic monopoles using five years of data recorded with the ANTARES neutrino telescope from January 2008 to December 2012 with a total live time of 1121 days is presented. The analysis is carried out in the range $beta$ $>$ $0.6$ of magnetic monopole velocities using a strategy based on run-by-run Monte Carlo simulations. No signal above the background expectation from atmospheric muons and atmospheric neutrinos is observed, and upper limits are set on the magnetic monopole flux ranging from $5.7 times 10^{-16}$ to $1.5 times 10^{-18}$ cm$^{-2} cdot $ s$^{-1} cdot $ sr$^{-1}$.
Magnetic monopoles are predicted in various unified gauge models and could be produced at intermediate mass scales. Their detection in a neutrino telescope is facilitated by the large amount of light emitted compared to that from muons. This paper reports on a search for upgoing relativistic magnetic monopoles with the ANTARES neutrino telescope using a data set of 116 days of live time taken from December 2007 to December 2008. The one observed event is consistent with the expected atmospheric neutrino and muon background, leading to a 90% C.L. upper limit on the monopole flux between 1.3E-17 and 8.9E-17 cm-2.s-1.sr-1 for monopoles with velocity beta greater than 0.625.
We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km$^{3}$. This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km$^{3}$ of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of $Phi_{mathrm{90%C.L.}}sim 3e{-18}fluxunits$ for $betageq0.8$. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost $gamma$ below $10^{7}$. This result is then interpreted for a wide range of mass and kinetic energy values.
IceTop is an air shower array located on the Antarctic ice sheet at the geographic South Pole. IceTop can detect an astrophysical flux of neutrons from Galactic sources as an excess of cosmic ray air showers arriving from the source direction. Neutrons are undeflected by the Galactic magnetic field and can typically travel 10 ($E$ / PeV) pc before decay. Two searches are performed using 4 years of the IceTop dataset to look for a statistically significant excess of events with energies above 10 PeV ($10^{16}$ eV) arriving within a small solid angle. The all-sky search method covers from -90$^{circ}$ to approximately -50$^{circ}$ in declination. No significant excess is found. A targeted search is also performed, looking for significant correlation with candidate sources in different target sets. This search uses a higher energy cut (100 PeV) since most target objects lie beyond 1 kpc. The target sets include pulsars with confirmed TeV energy photon fluxes and high-mass X-ray binaries. No significant correlation is found for any target set. Flux upper limits are determined for both searches, which can constrain Galactic neutron sources and production scenarios.
Neutrino detectors participate in the indirect search for the fundamental constituents of dark matter (DM) in form of weakly interacting massive particles (WIMPs). In WIMP scenarios, candidate DM particles can pair-annihilate into Standard Model products, yielding considerable fluxes of high-energy neutrinos. A detector like ANTARES, located in the Northern Hemisphere, is able to perform a competitive search looking towards the Galactic Centre, where a high density of dark matter is thought to accumulate. Both this directional information and the spectral features of annihilating DM pairs are entered into an unbinned likelihood method to scan the data set in search for DM-like signals in ANTARES data. Results obtained upon unblinding 11 years of data are presented. A non-observation of dark matter is converted into limits on the velocity-averaged cross section for WIMP pair annihilation.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا