No Arabic abstract
IIn this paper we study a general class of hybrid mathematical models of collective motions of cells under the influence of chemical stimuli. The models are hybrid in the sense that cells are discrete entities given by ODE, while the chemoattractant is considered as a continuous signal which solves a diffusive equation. For this model we prove the mean-field limit in the Wasserstein distance to a system given by the coupling of a Vlasov-type equation with the chemoattractant equation. Our approach is not based on empirical measures and we show the limit with explicit bounds, by proving also existence and uniqueness for the limit system. In the monokinetic case we derive pressureless nonlocal Euler-type model with chemotaxis.
In this paper, we derive the mean-field limit of a collective dynamics model with time-varying weights, for weight dynamics that preserve the total mass of the system as well as indistinguishability of the agents. The limit equation is a transport equation with source, where the (non-local) transport term corresponds to the position dynamics, and the (non-local) source term comes from the weight redistribution among the agents. We show existence and uniqueness of the solution for both microscopic and macroscopic models and introduce a new empirical measure taking into account the weights. We obtain the convergence of the microscopic model to the macroscopic one by showing continuity of the macroscopic solution with respect to the initial data, in the Wasserstein and Bounded Lipschitz topologies.
In this paper, we consider the mean field limit of Brownian particles with Coulomb interaction in 3D space. In particular, using a symmetrization technique, we show that the limit measure almost surely is a weak solution to the limiting nonlinear Fokker-Planck equation. By proving that the energy almost surely is bounded by the initial energy, we improve the regularity of the weak solutions. Moreover, by a natural assumption, we establish the weak strong uniqueness principle, which is closely related to the propagation of chaos.
We propose a way to break symmetry in stochastic dynamics by introducing a dissipation term. We show in a specific mean-field model, that if the reversible model undergoes a phase transition of ferromagnetic type, then its dissipative counterpart exhibits periodic orbits in the thermodynamic limit.
In this paper, we study a model for opinion dynamics where the influence weights of agents evolve in time via an equation which is coupled with the opinions evolution. We explore the natural question of the large population limit with two approaches: the now classical mean-field limit and the more recent graph limit. After establishing the existence and uniqueness of solutions to the models that we will consider, we provide a rigorous mathematical justification for taking the graph limit in a general context. Then, establishing the key notion of indistinguishability, which is a necessary framework to consider the mean-field limit, we prove the subordination of the mean-field limit to the graph one in that context. This actually provides an alternative (but weaker) proof for the mean-field limit. We conclude by showing some numerical simulations to illustrate our results.
The aim of this paper is to analyze a model for chemotaxis based on a local sensing mechanism instead of the gradient sensing mechanism used in the celebrated minimal Keller-Segel model. The model we study has the same entropy as the minimal Keller-Segel model, but a different dynamics to minimize this entropy. Consequently, the conditions on the mass for the existence of stationary solutions or blow-up are the same, however we make the interesting observation that with the local sensing mechanism the blow-up in the case of supercritical mass is delayed to infinite time. Our observation is made rigorous from a mathematical point via a proof of global existence of weak solutions for arbitrary large masses and space dimension. The key difference of our model to the minimal Keller-Segel model is that the structure of the equation allows for a duality estimate that implies a bound on the $(H^1)$-norm of the solutions, which can only grow with a square-root law in time. This additional $(H^1)$-bound implies a lower bound on the entropy, which contrasts markedly with the minimal Keller-Segel model for which it is unbounded from below in the supercritical case. Besides, regularity and uniqueness of solutions are also studied.