No Arabic abstract
Disagreement is essential to scientific progress. However, the extent of disagreement in science, its evolution over time, and the fields in which it happens, remains largely unknown. Leveraging a massive collection of scientific texts, we develop a cue-phrase based approach to identify instances of disagreement citations across more than four million scientific articles. Using this method, we construct an indicator of disagreement across scientific fields over the 2000-2015 period. In contrast with black-box text classification methods, our framework is transparent and easily interpretable. We reveal a disciplinary spectrum of disagreement, with higher disagreement in the social sciences and lower disagreement in physics and mathematics. However, detailed disciplinary analysis demonstrates heterogeneity across sub-fields, revealing the importance of local disciplinary cultures and epistemic characteristics of disagreement. Paper-level analysis reveals notable episodes of disagreement in science, and illustrates how methodological artefacts can confound analyses of scientific texts. These findings contribute to a broader understanding of disagreement and establish a foundation for future research to understanding key processes underlying scientific progress.
Introduces HIVE-4-MAT - Helping Interdisciplinary Vocabulary Engineering for Materials Science, an automatic linked data ontology application. Covers contextual background for materials science, shared ontology infrastructures, and reviews the knowledge extraction and indexing process. HIVE-4-MATs vocabulary browsing, term search and selection, and knowledge extraction and indexing are reviewed, and plans to integrate named entity recognition. Conclusion highlights next steps with relation extraction to support better ontologies.
Research on the construction of traditional information science methodology taxonomy is mostly conducted manually. From the limited corpus, researchers have attempted to summarize some of the research methodology entities into several abstract levels (generally three levels); however, they have been unable to provide a more granular hierarchy. Moreover, updating the methodology taxonomy is traditionally a slow process. In this study, we collected full-text academic papers related to information science. First, we constructed a basic methodology taxonomy with three levels by manual annotation. Then, the word vectors of the research methodology entities were trained using the full-text data. Accordingly, the research methodology entities were clustered and the basic methodology taxonomy was expanded using the clustering results to obtain a methodology taxonomy with more levels. This study provides new concepts for constructing a methodology taxonomy of information science. The proposed methodology taxonomy is semi-automated; it is more detailed than conventional schemes and the speed of taxonomy renewal has been enhanced.
By computing the rank correlation between attention weights and feature-additive explanation methods, previous analyses either invalidate or support the role of attention-based explanations as a faithful and plausible measure of salience. To investigate whether this approach is appropriate, we compare LIME, Integrated Gradients, DeepLIFT, Grad-SHAP, Deep-SHAP, and attention-based explanations, applied to two neural architectures trained on single- and pair-sequence language tasks. In most cases, we find that none of our chosen methods agree. Based on our empirical observations and theoretical objections, we conclude that rank correlation does not measure the quality of feature-additive methods. Practitioners should instead use the numerous and rigorous diagnostic methods proposed by the community.
Quantifying success in science plays a key role in guiding funding allocations, recruitment decisions, and rewards. Recently, a significant amount of progresses have been made towards quantifying success in science. This lack of detailed analysis and summary continues a practical issue. The literature reports the factors influencing scholarly impact and evaluation methods and indices aimed at overcoming this crucial weakness. We focus on categorizing and reviewing the current development on evaluation indices of scholarly impact, including paper impact, scholar impact, and journal impact. Besides, we summarize the issues of existing evaluation methods and indices, investigate the open issues and challenges, and provide possible solutions, including the pattern of collaboration impact, unified evaluation standards, implicit success factor mining, dynamic academic network embedding, and scholarly impact inflation. This paper should help the researchers obtaining a broader understanding of quantifying success in science, and identifying some potential research directions.
The paper citation network is a traditional social medium for the exchange of ideas and knowledge. In this paper we view citation networks from the perspective of information diffusion. We study the structural features of the information paths through the citation networks of publications in computer science, and analyze the impact of various citation choices on the subsequent impact of the article. We find that citing recent papers and papers within the same scholarly community garners a slightly larger number of citations on average. However, this correlation is weaker among well-cited papers implying that for high impact work citing within ones field is of lesser importance. We also study differences in information flow for specific subsets of citation networks: books versus conference and journal articles, different areas of computer science, and different time periods.