Ruppeiner geometry has been successfully applied in the study of the black hole microstructure by combining with the small-large black hole phase transition. In this paper, we will extend the study to the triple point, where three black hole phases coexist. For the six-dimensional charged Gauss-Bonnet anti-de Sitter black hole, we thoroughly investigate the swallow tail behaviors of the Gibbs free energy and the equal area laws. After obtaining the black hole triple point, we exhibit its phase structures both in pressure-temperature and temperature-horizon radius diagrams. Quite different from the liquid-vapor phase transition, a double peak behavior is present in the temperature-horizon radius phase diagram. Then we construct the Ruppeiner geometry and calculate the corresponding normalized curvature scalar. Near the triple point, we observe multiple negatively divergent behaviors. Positive curvature scalar is observed for the small black hole with high temperature, which indicates that the repulsive interaction dominates among the microstructure. Furthermore, we consider the variation of the curvature scalar along the coexisting intermediate and large black hole curves. Combining with the observation for different fluids, the result suggests that this black hole system behaves more like the argon or methane. Our study provides a first and preliminary step towards understanding black hole microstructure near the triple point, as well as uncovering the particular properties of the Gauss-Bonnet gravity.