No Arabic abstract
When performing a Monte Carlo calculation, the running time should in principle be much longer than the autocorrelation time in order to get reliable results. Among different lattice fermion models, the Holstein model is notorious for its particularly long autocorrelation time. In this work, we employ the Wang-Landau algorithm in the determinant quantum Monte Carlo to achieve the flat-histogram sampling in the configuration weight space, which can greatly reduce the autocorrelation time by sacrificing some sampling efficiency. The proposal is checked in the Holstein model on both square and honeycomb lattices. Based on such a Wang-Landau assisted determinant quantum Monte Carlo method, some models with long autocorrelation times can now be simulated possibly.
Monte Carlo (MC) simulations are essential computational approaches with widespread use throughout all areas of science. We present a method for accelerating lattice MC simulations using fully connected and convolutional artificial neural networks that are trained to perform local and global moves in configuration space, respectively. Both networks take local spacetime MC configurations as input features and can, therefore, be trained using samples generated by conventional MC runs on smaller lattices before being utilized for simulations on larger systems. This new approach is benchmarked for the case of determinant quantum Monte Carlo (DQMC) studies of the two-dimensional Holstein model. We find that both artificial neural networks are capable of learning an unspecified effective model that accurately reproduces the MC configuration weights of the original Hamiltonian and achieve an order of magnitude speedup over the conventional DQMC algorithm. Our approach is broadly applicable to many classical and quantum lattice MC algorithms.
We have performed numerical studies of the Hubbard-Holstein model in two dimensions using determinant quantum Monte Carlo (DQMC). Here we present details of the method, emphasizing the treatment of the lattice degrees of freedom, and then study the filling and behavior of the fermion sign as a function of model parameters. We find a region of parameter space with large Holstein coupling where the fermion sign recovers despite large values of the Hubbard interaction. This indicates that studies of correlated polarons at finite carrier concentrations are likely accessible to DQMC simulations. We then restrict ourselves to the half-filled model and examine the evolution of the antiferromagnetic structure factor, other metrics for antiferromagnetic and charge-density-wave order, and energetics of the electronic and lattice degrees of freedom as a function of electron-phonon coupling. From this we find further evidence for a competition between charge-density-wave and antiferromagnetic order at half-filling.
We study the effects of anharmonicity on the physics of the Holstein model, which describes the coupling of itinerant fermions and localized quantum phonons, by introducing a quartic term in the phonon potential energy. We find that the presence of this anharmonic term reduces the extent of the charge density wave phase (CDW) at half-filling as well as the transition temperature to this phase. Doping away from half-filling, we observe a first order phase transition between the CDW and a homogeneous phase which is also present in the harmonic model. In addition, we study the evolution of the superconducting susceptibility in the doped region and show that anharmonicity can enhance the superconducting response.
The Kondo and Periodic Anderson models describe many of the qualitative features of local moments coupled to a conduction band, and thereby the physics of materials such as the heavy fermions. In particular, when the exchange coupling $J$ or hybridization $V$ between the moments and the electrons of the metallic band is large, singlets form, quenching the magnetism. In the opposite, small $J$ or $V$, limit, the moments survive, and the conduction electrons mediate an effective interaction which can trigger long range, often antiferromagnetic, order. In the case of the Kondo model, where the moments are described by local spins, Nozi`eres considered the possibility that the available conduction electrons within the Kondo temperature of the Fermi surface would be insufficient in number to accomplish the screening. Much effort in the literature has been devoted to the study of the temperature scales in the resulting `exhaustion problem, and how the `coherence temperature where a heavy Fermi liquid forms is related to the Kondo temperature. In this paper, we study a version of the Periodic Anderson model in which some of the conduction electrons are removed in a way which avoids the fermion sign problem and hence allows low temperature Quantum Monte Carlo simulations which can access both singlet formation and magnetic ordering temperature scales. We are then able to focus on a somewhat different aspect of exhaustion physics than previously considered: the effect of dilution on the critical $V$ for the singlet-antiferromagnetic transition.
We characterize the three-orbital Hubbard model using state-of-the-art determinant quantum Monte Carlo (DQMC) simulations with parameters relevant to the cuprate high-temperature superconductors. The simulations find that doped holes preferentially reside on oxygen orbitals and that the ({pi},{pi}) antiferromagnetic ordering vector dominates in the vicinity of the undoped system, as known from experiments. The orbitally-resolved spectral functions agree well with photoemission spectroscopy studies and enable identification of orbital content in the bands. A comparison of DQMC results with exact diagonalization and cluster perturbation theory studies elucidates how these different numerical techniques complement one another to produce a more complete understanding of the model and the cuprates. Interestingly, our DQMC simulations predict a charge-transfer gap that is significantly smaller than the direct (optical) gap measured in experiment. Most likely, it corresponds to the indirect gap that has recently been suggested to be on the order of 0.8 eV, and demonstrates the subtlety in identifying charge gaps.