The linear algebra of Riordan matrices


Abstract in English

Riordan matrices are infinite lower triangular matrices determined by a pair of formal power series over the real or complex field. These matrices have been mainly studied as combinatorial objects with an emphasis placed on the algebraic or combinatorial structure. The present paper contributes to the linear algebraic discussion with an analysis of Riordan matrices by means of the interaction of the properties of formal power series with the linear algebra. Specifically, it is shown that if a Riordan matrix $A$ is an $ntimes n$ pseudo-involution then the singular values of $A$ must come in reciprocal pairs in $Sigma$ of a singular value decomposition $A=USigma V^T$. Moreover, we give a complete analysis of the existence and nonexistence of eigenvectors of Riordan matrices. As a result, we obtain a surprising partition of the group of Riordan matrices into three different types of eigenvectors. Finally, given a nonzero vector $v$, we investigate the algebraic structure of Riordan matrices $A$ that stabilize the vector $v$, i.e. $Av=v$.

Download