A supernormal partition statistic


Abstract in English

We study a bijective map from integer partitions to the prime factorizations of integers that we call the supernorm of a partition, in which the multiplicities of the parts of partitions are mapped to the multiplicities of prime factors of natural numbers. The supernorm is connected to a family of maps we define, which suggests the potential to apply techniques from partition theory to identify and prove multiplicative properties of integers. We make a brief study of pertinent analytic aspects of the supernorm. Then, as an application of supernorma mappings (i.e., pertaining to the supernorm statistic), we prove an analogue of a formula of Kural-McDonald-Sah to give arithmetic densities of subsets of $mathbb N$ instead of natural densities in $mathbb P$ like previous formulas of this type; this builds on works of Alladi, Ono, Wagner, and the first and third authors. Finally, using a table of supernormal additive-multiplicative correspondences, we conjecture Abelian-type formulas that specialize to our main theorem and other known results.

Download