Subwavelength Meta-Waveguide Filters and Meta-Ports


Abstract in English

This paper proposes a novel technique for the design of miniaturized waveguide filters based on locally resonant metamaterials (LRMs). We implement ultra-small metamaterial filters (Meta-filters) by exploiting a subwavelength (sub-lambda guiding mechanism in evanescent hollow waveguides, which are loaded by small resonators. In particular, we use composite pin-pipe waveguides (CPPWs) built from a hollow metallic pipe loaded by a set of resonant pins, which are spaced by deep subwavelength distances. We demonstrate that in such structures, multiple resonant scattering nucleates a sub-lambda mode with a customizable bandwidth below the induced hybridization bandgap (HBG) of the LRM. The sub-lambda guided mode and the HBG, respectively, induce pass- and rejection- bands in a finite-length CPPW, creating a filter whose main properties are largely decoupled from the specific arrangement of the resonant inclusions. To guarantee compatibility with existing technologies, we propose a unique subwavelength method to match the small CPPW filters to standard waveguide interfaces, which we call a meta-port. Finally, we build and test a family of low- and high-order ultra-compact aluminum CPPW filters in the Ku-band (10-18GHz). Our measurements demonstrate the customizability of the bandwidth and the robustness of the passband against geometrical scaling. The 3D-printed prototypes, which are one order of magnitude smaller and lighter than traditional filters and are also compatible with standard waveguide interfaces, may find applications in future satellite systems and 5G infrastructures.

Download