Do you want to publish a course? Click here

The Robustness of Graph k-shell Structure under Adversarial Attacks

70   0   0.0 ( 0 )
 Added by Bo Zhou
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The k-shell decomposition plays an important role in unveiling the structural properties of a network, i.e., it is widely adopted to find the densest part of a network across a broad range of scientific fields, including Internet, biological networks, social networks, etc. However, there arises concern about the robustness of the k-shell structure when networks suffer from adversarial attacks. Here, we introduce and formalize the problem of the k-shell attack and develop an efficient strategy to attack the k-shell structure by rewiring a small number of links. To the best of our knowledge, it is the first time to study the robustness of graph k-shell structure under adversarial attacks. In particular, we propose a Simulated Annealing (SA) based k-shell attack method and testify it on four real-world social networks. The extensive experiments validate that the k-shell structure of a network is robust under random perturbation, but it is quite vulnerable under adversarial attack, e.g., in Dolphin and Throne networks, more than 40% nodes change their k-shell values when only 10% links are changed based on our SA-based k-shell attack. Such results suggest that a single structural feature could also be significantly disturbed when only a small fraction of links are changed purposefully in a network. Therefore, it could be an interesting topic to improve the robustness of various network properties against adversarial attack in the future.



rate research

Read More

184 - Qi Xuan , Yalu Shan , Jinhuan Wang 2020
Adversarial attacks have been alerting the artificial intelligence community recently, since many machine learning algorithms were found vulnerable to malicious attacks. This paper studies adversarial attacks to scale-free networks to test their robustness in terms of statistical measures. In addition to the well-known random link rewiring (RLR) attack, two heuristic attacks are formulated and simulated: degree-addition-based link rewiring (DALR) and degree-interval-based link rewiring (DILR). These three strategies are applied to attack a number of strong scale-free networks of various sizes generated from the Barabasi-Albert model. It is found that both DALR and DILR are more effective than RLR, in the sense that rewiring a smaller number of links can succeed in the same attack. However, DILR is as concealed as RLR in the sense that they both are constructed by introducing a relatively small number of changes on several typical structural properties such as average shortest path-length, average clustering coefficient, and average diagonal distance. The results of this paper suggest that to classify a network to be scale-free has to be very careful from the viewpoint of adversarial attack effects.
Recent work has shown that graph neural networks (GNNs) are vulnerable to adversarial attacks on graph data. Common attack approaches are typically informed, i.e. they have access to information about node attributes such as labels and feature vectors. In this work, we study adversarial attacks that are uninformed, where an attacker only has access to the graph structure, but no information about node attributes. Here the attacker aims to exploit structural knowledge and assumptions, which GNN models make about graph data. In particular, literature has shown that structural node centrality and similarity have a strong influence on learning with GNNs. Therefore, we study the impact of centrality and similarity on adversarial attacks on GNNs. We demonstrate that attackers can exploit this information to decrease the performance of GNNs by focusing on injecting links between nodes of low similarity and, surprisingly, low centrality. We show that structure-based uninformed attacks can approach the performance of informed attacks, while being computationally more efficient. With our paper, we present a new attack strategy on GNNs that we refer to as Structack. Structack can successfully manipulate the performance of GNNs with very limited information while operating under tight computational constraints. Our work contributes towards building more robust machine learning approaches on graphs.
State-of-the-art deep neural networks (DNNs) have been proved to have excellent performance on unsupervised domain adaption (UDA). However, recent work shows that DNNs perform poorly when being attacked by adversarial samples, where these attacks are implemented by simply adding small disturbances to the original images. Although plenty of work has focused on this, as far as we know, there is no systematic research on the robustness of unsupervised domain adaption model. Hence, we discuss the robustness of unsupervised domain adaption against adversarial attacking for the first time. We benchmark various settings of adversarial attack and defense in domain adaption, and propose a cross domain attack method based on pseudo label. Most importantly, we analyze the impact of different datasets, models, attack methods and defense methods. Directly, our work proves the limited robustness of unsupervised domain adaptation model, and we hope our work may facilitate the community to pay more attention to improve the robustness of the model against attacking.
Attention-based networks have achieved state-of-the-art performance in many computer vision tasks, such as image classification. Unlike Convolutional Neural Network (CNN), the major part of the vanilla Vision Transformer (ViT) is the attention block that brings the power of mimicking the global context of the input image. This power is data hunger and hence, the larger the training data the better the performance. To overcome this limitation, many ViT-based networks, or hybrid-ViT, have been proposed to include local context during the training. The robustness of ViTs and its variants against adversarial attacks has not been widely invested in the literature. Some robustness attributes were revealed in few previous works and hence, more insight robustness attributes are yet unrevealed. This work studies the robustness of ViT variants 1) against different $L_p$-based adversarial attacks in comparison with CNNs and 2) under Adversarial Examples (AEs) after applying preprocessing defense methods. To that end, we run a set of experiments on 1000 images from ImageNet-1k and then provide an analysis that reveals that vanilla ViT or hybrid-ViT are more robust than CNNs. For instance, we found that 1) Vanilla ViTs or hybrid-ViTs are more robust than CNNs under $L_0$, $L_1$, $L_2$, $L_infty$-based, and Color Channel Perturbations (CCP) attacks. 2) Vanilla ViTs are not responding to preprocessing defenses that mainly reduce the high frequency components while, hybrid-ViTs are more responsive to such defense. 3) CCP can be used as a preprocessing defense and larger ViT variants are found to be more responsive than other models. Furthermore, feature maps, attention maps, and Grad-CAM visualization jointly with image quality measures, and perturbations energy spectrum are provided for an insight understanding of attention-based models.
The increasing computational demand of Deep Learning has propelled research in special-purpose inference accelerators based on emerging non-volatile memory (NVM) technologies. Such NVM crossbars promise fast and energy-efficient in-situ Matrix Vector Multiplication (MVM) thus alleviating the long-standing von Neuman bottleneck in todays digital hardware. However, the analog nature of computing in these crossbars is inherently approximate and results in deviations from ideal output values, which reduces the overall performance of Deep Neural Networks (DNNs) under normal circumstances. In this paper, we study the impact of these non-idealities under adversarial circumstances. We show that the non-ideal behavior of analog computing lowers the effectiveness of adversarial attacks, in both Black-Box and White-Box attack scenarios. In a non-adaptive attack, where the attacker is unaware of the analog hardware, we observe that analog computing offers a varying degree of intrinsic robustness, with a peak adversarial accuracy improvement of 35.34%, 22.69%, and 9.90% for white box PGD (epsilon=1/255, iter=30) for CIFAR-10, CIFAR-100, and ImageNet respectively. We also demonstrate Hardware-in-Loop adaptive attacks that circumvent this robustness by utilizing the knowledge of the NVM model.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا