Coexistence of vector soliton Kerr combs in normal dispersion resonators


Abstract in English

We investigate the formation of dark vector localized structures in the presence of nonlinear polarization mode coupling in optical resonators subject to a coherent optical injection in the normal dispersion regime. This simple device is described by coupled Lugiato-Lefever equations. The stabilization of localized structures is attributed to a front locking mechanism. We show that in a multistable homogeneous steady-state regime, two branches of dark localized structures can coexist for a fixed value of the system parameters. These coexisting solutions possess different polarization states and different power peaks in the microresonator. We characterize in-depth their formation by drawing their bifurcation diagrams in regimes close to modulational instability and far from it. It is shown that both branches of localized structures exhibit a heteroclinic collapse snaking type of behavior. The coexistence of two vectorial branches of dark localized states is not possible without taking into account polarization degrees of freedom.

Download