Effects of homophily and heterophily on preferred-degree networks: mean-field analysis and overwhelming transition


Abstract in English

We investigate the long-time properties of a dynamic, out-of-equilibrium, network of individuals holding one of two opinions in a population consisting of two communities of different sizes. Here, while the agents opinions are fixed, they have a preferred degree which leads them to endlessly create and delete links. Our evolving network is shaped by homophily/heterophily, which is a form of social interaction by which individuals tend to establish links with others having similar/dissimilar opinions. Using Monte Carlo simulations and a detailed mean-field analysis, we study in detail how the sizes of the communities and the degree of homophily/heterophily affects the network structure. In particular, we show that when the network is subject to enough heterophily, an overwhelming transition occurs: individuals of the smaller community are overwhelmed by links from agents of the larger group, and their mean degree greatly exceeds the preferred degree. This and related phenomena are characterized by obtaining the networks total and joint degree distributions, as well as the fraction of links across both communities and that of agents having less edges than the preferred degree. We use our mean-field theory to discuss the networks polarization when the group sizes and level of homophily vary.

Download