No Arabic abstract
Leveraging hypergraph structures to model advanced processes has gained much attention over the last few years in many areas, ranging from protein-interaction in computational biology to image retrieval using machine learning. Hypergraph models can provide a more accurate representation of the underlying processes while reducing the overall number of links compared to regular representations. However, interactive visualization methods for hypergraphs and hypergraph-based models have rarely been explored or systematically analyzed. This paper reviews the existing research landscape for hypergraph and hypergraph model visualizations and assesses the currently employed techniques. We provide an overview and a categorization of proposed approaches, focusing on performance, scalability, interaction support, successful evaluation, and the ability to represent different underlying data structures, including a recent demand for a temporal representation of interaction networks and their improvements beyond graph-based methods. Lastly, we discuss the strengths and weaknesses of the approaches and give an insight into the future challenges arising in this emerging research field.
We present RealitySketch, an augmented reality interface for sketching interactive graphics and visualizations. In recent years, an increasing number of AR sketching tools enable users to draw and embed sketches in the real world. However, with the current tools, sketched contents are inherently static, floating in mid air without responding to the real world. This paper introduces a new way to embed dynamic and responsive graphics in the real world. In RealitySketch, the user draws graphical elements on a mobile AR screen and binds them with physical objects in real-time and improvisational ways, so that the sketched elements dynamically move with the corresponding physical motion. The user can also quickly visualize and analyze real-world phenomena through responsive graph plots or interactive visualizations. This paper contributes to a set of interaction techniques that enable capturing, parameterizing, and visualizing real-world motion without pre-defined programs and configurations. Finally, we demonstrate our tool with several application scenarios, including physics education, sports training, and in-situ tangible interfaces.
Feedback tools help people to monitor information about themselves to improve their health, sustainability practices, or personal well-being. Yet reasoning about personal data (e.g., pedometer counts, blood pressure readings, or home electricity consumption) to gain a deep understanding of your current practices and how to change can be challenging with the data alone. We integrate quantitative feedback data within a personal digital calendar; this approach aims to make the feedback data readily accessible and more comprehensible. We report on an eight-week field study of an on-calendar visualization tool. Results showed that a personal calendar can provide rich context for people to reason about their feedback data. The on-calendar visualization enabled people to quickly identify and reason about regular patterns and anomalies. Based on our results, we also derived a model of the behavior feedback process that extends existing technology adoption models. With that, we reflected on potential barriers for the ongoing use of feedback tools.
Set systems are used to model data that naturally arises in many contexts: social networks have communities, musicians have genres, and patients have symptoms. Visualizations that accurately reflect the information in the underlying set system make it possible to identify the set elements, the sets themselves, and the relationships between the sets. In static contexts, such as print media or infographics, it is necessary to capture this information without the help of interactions. With this in mind, we consider three different systems for medium-sized set data, LineSets, EulerView, and MetroSets, and report the results of a controlled human-subjects experiment comparing their effectiveness. Specifically, we evaluate the performance, in terms of time and error, on tasks that cover the spectrum of static set-based tasks. We also collect and analyze qualitative data about the three different visualization systems. Our results include statistically significant differences, suggesting that MetroSets performs and scales better.
Significant research has provided robust task and evaluation languages for the analysis of exploratory visualizations. Unfortunately, these taxonomies fail when applied to communicative visualizations. Instead, designers often resort to evaluating communicative visualizations from the cognitive efficiency perspective: can the recipient accurately decode my message/insight? However, designers are unlikely to be satisfied if the message went in one ear and out the other. The consequence of this inconsistency is that it is difficult to design or select between competing options in a principled way. The problem we address is the fundamental mismatch between how designers want to describe their intent, and the language they have. We argue that visualization designers can address this limitation through a learning lens: that the recipient is a student and the designer a teacher. By using learning objectives, designers can better define, assess, and compare communicative visualizations. We illustrate how the learning-based approach provides a framework for understanding a wide array of communicative goals. To understand how the framework can be applied (and its limitations), we surveyed and interviewed members of the Data Visualization Society using their own visualizations as a probe. Through this study we identified the broad range of objectives in communicative visualizations and the prevalence of certain objective types.
Some of the most spectacular failures of density-functional and Hartree-Fock theories are related to an incorrect description of the so-called static electron correlation. Motivated by recent progress on the N-representability problem of the one-body density matrix for pure states, we propose a way to quantify the static contribution to the electronic correlation. By studying several molecular systems we show that our proposal correlates well with our intuition of static and dynamic electron correlation. Our results bring out the paramount importance of the occupancy of the highest occupied natural spin-orbital in such quantification.