Do you want to publish a course? Click here

Influence of Roughness on Granular Avalanches

85   0   0.0 ( 0 )
 Added by Yujie Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Combining X-ray tomography with simultaneous shear force measurement, we investigate shear-induced granular avalanches using spherical particles with different surface roughness. We find that systems consisting of particles with large surface roughness display quasi-periodic avalanches interrupted by crackling-like small ones. In contrast, systems consisting of particles with small roughness display no detectable avalanches. The stress drop of quasi-periodic avalanche shows a linear relation with the correlation length of particle non-affine displacement, suggesting that roughness enhances inter-particle locking and hence particle-level dynamic correlation length. However, the nonaffine displacement is two orders of magnitude smaller than particle size, indicating that stress is mainly released on the length scale of roughness. The correlation length of non-affine displacements abruptly increases when a quasi-periodic avalanche occurs, suggesting that quasi-periodic avalanches can be interpreted as a spinodal nucleation event in a first-order phase transition.



rate research

Read More

Avalanche experiments on an erodible substrate are treated in the framework of ``partial fluidization model of dense granular flows. The model identifies a family of propagating soliton-like avalanches with shape and velocity controlled by the inclination angle and the depth of substrate. At high inclination angles the solitons display a transverse instability, followed by coarsening and fingering similar to recent experimental observation. A primary cause for the transverse instability is directly related to the dependence of soliton velocity on the granular mass trapped in the avalanche.
We study experimentally the fracture mechanisms of a model cohesive granular medium consisting of glass beads held together by solidified polymer bridges. The elastic response of this material can be controlled by changing the cross-linking of the polymer phase, for example. Here we show that its fracture toughness can be tuned over an order of magnitude by adjusting the stiffness and size of the polymer bridges. We extract a well-defined fracture energy from fracture testing under a range of material preparations. This energy is found to scale linearly with the cross-sectional area of the bridges. Finally, X-ray microcomputed tomography shows that crack propagation is driven by adhesive failure of about one polymer bridge per bead located at the interface, along with microcracks in the vicinity of the failure plane. Our findings provide insight to the fracture mechanisms of this model material, and the mechanical properties of disordered cohesive granular media in general.
Large-scale three dimensional molecular dynamics simulations of hopper flow are presented. The flow rate of the system is controlled by the width of the aperture at the bottom. As the steady-state flow rate is reduced, the force distribution $P(f)$ changes only slightly, while there is a large change in the impulse distribution $P(i)$. In both cases, the distributions show an increase in small forces or impulses as the systems approach jamming, the opposite of that seen in previous Lennard-Jones simulations. This occurs dynamically as well for a hopper that transitions from a flowing to a jammed state over time. The final jammed $P(f)$ is quite distinct from a poured packing $P(f)$ in the same geometry. The change in $P(i)$ is a much stronger indicator of the approach to jamming. The formation of a peak or plateau in $P(f)$ at the average force is not a general feature of the approach to jamming.
The response to a localized force provides a sensitive test for different models of stress transmission in granular solids. The elasto-plastic models traditionally used by engineers have been challenged by theoretical and experimental results which suggest a wave-like (hyperbolic) propagation of the stress, as opposed to the elliptic equations of static elasticity. Numerical simulations of two-dimensional granular systems subject to a localized external force are employed to examine the nature of stress transmission in these systems as a function of the magnitude of the applied force, the frictional parameters and the disorder (polydispersity). The results indicate that in large systems (typically considered by engineers), the response is close to that predicted by isotropic elasticity whereas the response of small systems (or when sufficiently large forces are applied) is strongly anisotropic. In the latter case the applied force induces changes in the contact network accompanied by frictional sliding. The larger the coefficient of static friction, the more extended is the range of forces for which the response is elastic and the smaller the anisotropy. Increasing the degree of polydispersity (for the range studied, up to 25%) decreases the range of elastic response. This article is an extension of a previously published letter [1].
We carry out a direct comparison of experimental and numerical realizations of the exact same granular system as it undergoes shear jamming. We adjust the numerical methods used to optimally represent the experimental settings and outcomes up to microscopic contact force dynamics. Measures presented here range form microscopic, through mesoscopic to system-wide characteristics of the system. Topological properties of the mesoscopic force networks provide a key link between micro and macro scales. We report two main findings: the number of particles in the packing that have at least two contacts is a good predictor for the mechanical state of the system, regardless of strain history and packing density. All measures explored in both experiments and numerics, including stress tensor derived measures and contact numbers depend in a universal manner on the fraction of non-rattler particles, $f_{NR}$. The force network topology also tends to show this universality, yet the shape of the master curve depends much more on the details of the numerical simulations. In particular we show that adding force noise to the numerical data set can significantly alter the topological features in the data. We conclude that both $f_{NR}$ and topological metrics are useful measures to consider when quantifying the state of a granular system.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا