No Arabic abstract
In this paper, we obtain several structural results for the value function associated to a mean-field optimal control problem of Bolza type in the space of measures. After establishing the sensitivity relations bridging between the costates of the maximum principle and metric superdifferentials of the value function, we investigate semiconcavity properties of this latter with respect to both variables. We then characterise optimal trajectories using set-valued feedback mappings defined in terms of suitable directional derivatives of the value function.
We study the regularity properties of the value function associated with an affine optimal control problem with quadratic cost plus a potential, for a fixed final time and initial point. Without assuming any condition on singular minimizers, we prove that the value function is continuous on an open and dense subset of the interior of the attainable set. As a byproduct we obtain that it is actually smooth on a possibly smaller set, still open and dense.
This paper characterizes the solution to a finite horizon min-max optimal control problem where the system is linear and discrete-time with control and state constraints, and the cost quadratic; the disturbance is negatively costed, as in the standard H-infinity problem, and is constrained. The cost is minimized over control policies and maximized over disturbance sequences so that the solution yields a feedback control. It is shown that the value function is piecewise quadratic and the optimal control policy piecewise affine, being quadratic and affine, respectively, in polytopes that partition the domain of the value function.
An abstract framework guaranteeing the local continuous differentiability of the value function associated with optimal stabilization problems subject to abstract semilinear parabolic equations subject to a norm constraint on the controls is established. It guarantees that the value function satisfies the associated Hamilton-Jacobi-Bellman equation in the classical sense. The applicability of the developed framework is demonstrated for specific semilinear parabolic equations.
A mean-field selective optimal control problem of multipopulation dynamics via transient leadership is considered. The agents in the system are described by their spatial position and their probability of belonging to a certain population. The dynamics in the control problem is characterized by the presence of an activation function which tunes the control on each agent according to the membership to a population, which, in turn, evolves according to a Markov-type jump process. This way, a hypothetical policy maker can select a restricted pool of agents to act upon based, for instance, on their time-dependent influence on the rest of the population. A finite-particle control problem is studied and its mean-field limit is identified via $Gamma$-convergence, ensuring convergence of optimal controls. The dynamics of the mean-field optimal control is governed by a continuity-type equation without diffusion. Specific applications in the context of opinion dynamics are discussed with some numerical experiments.
We propose a mean-field optimal control problem for the parameter identification of a given pattern. The cost functional is based on the Wasserstein distance between the probability measures of the modeled and the desired patterns. The first-order optimality conditions corresponding to the optimal control problem are derived using a Lagrangian approach on the mean-field level. Based on these conditions we propose a gradient descent method to identify relevant parameters such as angle of rotation and force scaling which may be spatially inhomogeneous. We discretize the first-order optimality conditions in order to employ the algorithm on the particle level. Moreover, we prove a rate for the convergence of the controls as the number of particles used for the discretization tends to infinity. Numerical results for the spatially homogeneous case demonstrate the feasibility of the approach.