Do you want to publish a course? Click here

Stratified Radiative Transfer for Multidimensional Fluids

263   0   0.0 ( 0 )
 Added by Olivier Pironneau
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

New mathematical and numerical results are given for the coupling of the temperature equation of a fluid with Radiative Transfer: existence and uniqueness and a convergent monotone numerical scheme. The technique is shown to be feasible for studying the temperature of lake Leman heated by the sun and for the earth atmosphere to study the effects of greenhouse gases.



rate research

Read More

Linear kinetic transport equations play a critical role in optical tomography, radiative transfer and neutron transport. The fundamental difficulty hampering their efficient and accurate numerical resolution lies in the high dimensionality of the physical and velocity/angular variables and the fact that the problem is multiscale in nature. Leveraging the existence of a hidden low-rank structure hinted by the diffusive limit, in this work, we design and test the angular-space reduced order model for the linear radiative transfer equation, the first such effort based on the celebrated reduced basis method (RBM). Our method is built upon a high-fidelity solver employing the discrete ordinates method in the angular space, an asymptotic preserving upwind discontinuous Galerkin method for the physical space, and an efficient synthetic accelerated source iteration for the resulting linear system. Addressing the challenge of the parameter values (or angular directions) being coupled through an integration operator, the first novel ingredient of our method is an iterative procedure where the macroscopic density is constructed from the RBM snapshots, treated explicitly and allowing a transport sweep, and then updated afterwards. A greedy algorithm can then proceed to adaptively select the representative samples in the angular space and form a surrogate solution space. The second novelty is a least-squares density reconstruction strategy, at each of the relevant physical locations, enabling the robust and accurate integration over an arbitrarily unstructured set of angular samples toward the macroscopic density. Numerical experiments indicate that our method is highly effective for computational cost reduction in a variety of regimes.
We propose a new approach to the numerical solution of radiative transfer equations with certified a posteriori error bounds. A key role is played by stable Petrov--Galerkin type variational formulations of parametric transport equations and corresponding radiative transfer equations. This allows us to formulate an iteration in a suitable, infinite dimensional function space that is guaranteed to converge with a fixed error reduction per step. The numerical scheme is then based on approximately realizing this iteration within dynamically updated accuracy tolerances that still ensure convergence to the exact solution. To advance this iteration two operations need to be performed within suitably tightened accuracy tolerances. First, the global scattering operator needs to be approximately applied to the current iterate within a tolerance comparable to the current accuracy level. Second, parameter dependent linear transport equations need to be solved, again at the required accuracy of the iteration. To ensure that the stage dependent error tolerances are met, one has to employ rigorous a posteriori error bounds which, in our case, rest on a Discontinuous Petrov--Galerkin (DPG) scheme. These a posteriori bounds are not only crucial for guaranteeing the convergence of the perturbed iteration but are also used to generate adapted parameter dependent spatial meshes. This turns out to significantly reduce overall computational complexity. Since the global operator is only applied, we avoid the need to solve linear systems with densely populated matrices. Moreover, the approximate application of the global scatterer accelerated through low-rank approximation and matrix compression techniques. The theoretical findings are illustrated and complemented by numerical experiments with non-trivial scattering kernels.
126 - Tao Xiong , Wenjun Sun , Yi Shi 2020
In this paper, we will develop a class of high order asymptotic preserving (AP) discontinuous Galerkin (DG) methods for nonlinear time-dependent gray radiative transfer equations (GRTEs). Inspired by the work cite{Peng2020stability}, in which stability enhanced high order AP DG methods are proposed for linear transport equations, we propose to pernalize the nonlinear GRTEs under the micro-macro decomposition framework by adding a weighted linear diffusive term. In the diffusive limit, a hyperbolic, namely $Delta t=mathcal{O}(h)$ where $Delta t$ and $h$ are the time step and mesh size respectively, instead of parabolic $Delta t=mathcal{O}(h^2)$ time step restriction is obtained, which is also free from the photon mean free path. The main new ingredient is that we further employ a Picard iteration with a predictor-corrector procedure, to decouple the resulting global nonlinear system to a linear system with local nonlinear algebraic equations from an outer iterative loop. Our scheme is shown to be asymptotic preserving and asymptotically accurate. Numerical tests for one and two spatial dimensional problems are performed to demonstrate that our scheme is of high order, effective and efficient.
Science and engineering problems subject to uncertainty are frequently both computationally expensive and feature nonsmooth parameter dependence, making standard Monte Carlo too slow, and excluding efficient use of accelerated uncertainty quantification methods relying on strict smoothness assumptions. To remedy these challenges, we propose an adaptive stratification method suitable for nonsmooth problems and with significantly reduced variance compared to Monte Carlo sampling. The stratification is iteratively refined and samples are added sequentially to satisfy an allocation criterion combining the benefits of proportional and optimal sampling. Theoretical estimates are provided for the expected performance and probability of failure to correctly estimate essential statistics. We devise a practical adaptive stratification method with strata of the same kind of geometrical shapes, cost-effective refinement satisfying a greedy variance reduction criterion. Numerical experiments corroborate the theoretical findings and exhibit speedups of up to three orders of magnitude compared to standard Monte Carlo sampling.
73 - Julius Reiss 2020
Mode-based model-reduction is used to reduce the degrees of freedom of high dimensional systems, often by describing the system state by a linear combination of spatial modes. Transport dominated phenomena, ubiquitous in technical and scientific applications, often require a large number of linear modes to obtain a small representation error. This difficulty, even for the most simple transports, originates from the inappropriateness of the decomposition structure in time dependent amplitudes of purely spatial modes. In this article an approach is discussed, which decomposes a flow field into several fields of co-moving frames, where each one can be approximated by a few modes. The method of decomposition is formulated as an optimization problem. Different singular-value-based objective functions are discussed and connected to former formulations. A boundary treatment is provided. The decomposition is applied to generic cases and to a technically relevant flow configuration of combustion physics.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا