Do you want to publish a course? Click here

Tensor-Based Channel Estimation and Reflection Design for RIS-Aided Millimeter-Wave MIMO Communication Systems

89   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this work, we consider both channel estimation and reflection design problems in point-to-point reconfigurable intelligent surface (RIS)-aided millimeter-wave (mmWave) MIMO communication systems. First, we show that by exploiting the low-rank nature of mmWave MIMO channels, the received training signals can be written as a low-rank multi-way tensor admitting a canonical polyadic CP decomposition. Utilizing such a structure, a tensor-based RIS channel estimation method (termed TenRICE) is proposed, wherein the tensor factor matrices are estimated using an alternating least squares method. Using TenRICE, the transmitter-to-RIS and the RIS-to-receiver channels are efficiently and separately estimated, up to a trivial scaling factor. After that, we formulate the beamforming and RIS reflection design as a spectral efficiency maximization problem. Due to its non-convexity, we propose a heuristic non-iterative two-step method, where the RIS reflection vector is obtained in a closed form using a Frobenius-norm maximization (FroMax) strategy. Our numerical results show that TenRICE has a superior performance, compared to benchmark methods, approaching the Cramer-Rao lower bound with a low training overhead. Moreover, we show that FroMax achieves a comparable performance to benchmark methods with a lower complexity.



rate research

Read More

We consider the channel estimation problem in point-to-point reconfigurable intelligent surface (RIS)-aided millimeter-wave (mmWave) MIMO systems. By exploiting the low-rank nature of mmWave channels in the angular domains, we propose a non-iterative Two-stage RIS-aided Channel Estimation (TRICE) framework, where every stage is formulated as a multidimensional direction-of-arrival (DOA) estimation problem. As a result, our TRICE framework is very general in the sense that any efficient multidimensional DOA estimation solution can be readily used in every stage to estimate the associated channel parameters. Numerical results show that the TRICE framework has a lower training overhead and a lower computational complexity, as compared to benchmark solutions.
107 - Gui Zhou , Cunhua Pan , Hong Ren 2021
Channel estimation in the RIS-aided massive multiuser multiple-input single-output (MU-MISO) wireless communication systems is challenging due to the passive feature of RIS and the large number of reflecting elements that incur high channel estimation overhead. To address this issue, we propose a novel cascaded channel estimation strategy with low pilot overhead by exploiting the sparsity and the correlation of multiuser cascaded channels in millimeter-wave massive MISO systems. Based on the fact that the phsical positions of the BS, the RIS and users may not change in several or even tens of consecutive channel coherence blocks, we first estimate the full channel state information (CSI) including all the angle and gain information in the first coherence block, and then only re-estimate the channel gains in the remaining coherence blocks with much less pilot overhead. In the first coherence block, we propose a two-phase channel estimation method, in which the cascaded channel of one typical user is estimated in Phase I based on the linear correlation among cascaded paths, while the cascaded channels of other users are estimated in Phase II by utilizing the partial CSI of the common base station (BS)-RIS channel obtained in Phase I. The total theoretical minimum pilot overhead in the first coherence block is $8J-2+(K-1)leftlceil (8J-2)/Lrightrceil $, where $K$, $L$ and $J$ denote the numbers of users, paths in the BS-RIS channel and paths in the RIS-user channel, respectively. In each of the remaining coherence blocks, the minimum pilot overhead is $JK$. Moreover, the training phase shift matrices at the RIS are optimized to improve the estimation performance.
A reconfigurable intelligent surface (RIS) can shape the radio propagation by passively changing the directions of impinging electromagnetic waves. The optimal control of the RIS requires perfect channel state information (CSI) of all the links connecting the base station (BS) and the mobile station (MS) via the RIS. Thereby the channel (parameter) estimation at the BS/MS and the related message feedback mechanism are needed. In this paper, we adopt a two-stage channel estimation scheme for the RIS-aided millimeter wave (mmWave) MIMO channels using an iterative reweighted method to sequentially estimate the channel parameters. We evaluate the average spectrum efficiency (SE) and the RIS beamforming gain of the proposed scheme and demonstrate that it achieves high-resolution estimation with the average SE comparable to that with perfect CSI.
A reconfigurable intelligent surface (RIS) can shape the radio propagation environment by virtue of changing the impinging electromagnetic waves towards any desired directions, thus, breaking the general Snells reflection law. However, the optimal control of the RIS requires perfect channel state information (CSI) of the individual channels that link the base station (BS) and the mobile station (MS) to each other via the RIS. Thereby super-resolution channel (parameter) estimation needs to be efficiently conducted at the BS or MS with CSI feedback to the RIS controller. In this paper, we adopt a two-stage channel estimation scheme for RIS-aided millimeter wave (mmWave) MIMO systems without a direct BS-MS channel, using atomic norm minimization to sequentially estimate the channel parameters, i.e., angular parameters, angle differences, and products of propagation path gains. We evaluate the mean square error of the parameter estimates, the RIS gains, the average effective spectrum efficiency bound, and average squared distance between the designed beamforming and combining vectors and the optimal ones. The results demonstrate that the proposed scheme achieves super-resolution estimation compared to the existing benchmark schemes, thus offering promising performance in the subsequent data transmission phase.
433 - Xu Shi , Jintao Wang , Guozhi Chen 2021
Reconfigurable intelligent surface (RIS) has been recognized as a potential technology for 5G beyond and attracted tremendous research attention. However, channel estimation in RIS-aided system is still a critical challenge due to the excessive amount of parameters in cascaded channel. The existing compressive sensing (CS)-based RIS estimation schemes only adopt incomplete sparsity, which induces redundant pilot consumption. In this paper, we exploit the specific triple-structured sparsity of the cascaded channel, i.e., the common column sparsity, structured row sparsity after offset compensation and the common offsets among all users. Then a novel multi-user joint estimation algorithm is proposed. Simulation results show that our approach can significantly reduce pilot overhead in both ULA and UPA scenarios.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا