No Arabic abstract
Distillation is a unit operation with multiple input parameters and multiple output parameters. It is characterized by multiple variables, coupling between input parameters, and non-linear relationship with output parameters. Therefore, it is very difficult to use traditional methods to control and optimize the distillation column. Artificial Neural Network (ANN) uses the interconnection between a large number of neurons to establish the functional relationship between input and output, thereby achieving the approximation of any non-linear mapping. ANN is used for the control and optimization of distillation tower, with short response time, good dynamic performance, strong robustness, and strong ability to adapt to changes in the control environment. This article will mainly introduce the research progress of ANN and its application in the modeling, control and optimization of distillation towers.
Distillation process is a complex process of conduction, mass transfer and heat conduction, which is mainly manifested as follows: The mechanism is complex and changeable with uncertainty; the process is multivariate and strong coupling; the system is nonlinear, hysteresis and time-varying. Neural networks can perform effective learning based on corresponding samples, do not rely on fixed mechanisms, have the ability to approximate arbitrary nonlinear mappings, and can be used to establish system input and output models. The temperature system of the rectification tower has a complicated structure and high accuracy requirements. The neural network is used to control the temperature of the system, which satisfies the requirements of the production process. This article briefly describes the basic concepts and research progress of neural network and distillation tower temperature control, and systematically summarizes the application of neural network in distillation tower control, aiming to provide reference for the development of related industries.
Artificial neural network modeling does not need to consider the mechanism. It can map the implicit relationship between input and output and predict the performance of the system well. At the same time, it has the advantages of self-learning ability and high fault tolerance. The gas-liquid two phases in the rectification tower conduct interphase heat and mass transfer through countercurrent contact. The functional relationship between the product concentration at the top and bottom of the tower and the process parameters is extremely complex. The functional relationship can be accurately controlled by artificial neural network algorithms. The key components of the propylene distillation tower are the propane concentration at the top of the tower and the propylene concentration at the bottom of the tower. Accurate measurement of them plays a key role in increasing propylene yield in ethylene production enterprises. This article mainly introduces the neural network model and its application in the propylene distillation tower.
This paper presents an implementation of multilayer feed forward neural networks (NN) to optimize CMOS analog circuits. For modeling and design recently neural network computational modules have got acceptance as an unorthodox and useful tool. To achieve high performance of active or passive circuit component neural network can be trained accordingly. A well trained neural network can produce more accurate outcome depending on its learning capability. Neural network model can replace empirical modeling solutions limited by range and accuracy.[2] Neural network models are easy to obtain for new circuits or devices which can replace analytical methods. Numerical modeling methods can also be replaced by neural network model due to their computationally expansive behavior.[2][10][20]. The pro- posed implementation is aimed at reducing resource requirement, without much compromise on the speed. The NN ensures proper functioning by assigning the appropriate inputs, weights, biases, and excitation function of the layer that is currently being computed. The concept used is shown to be very effective in reducing resource requirements and enhancing speed.
The artificial neural networks (ANNs) have emerged with successful applications in nuclear physics as well as in many fields of science in recent years. In this paper, by using (ANNs), we have constructed a formula for the nuclear charge radii. Statistical modeling of nuclear charge radii by using ANNs has been seen as to be successful. Also, the charge radii, binding energies and two-neutron separation energies of Sn isotopes have been calculated by implementing of the new formula in Hartree-Fock-Bogoliubov (HFB) calculations. The results of the study shows that the new formula is useful for describing nuclear charge radii.
Despite the significance of Artificial Neural Network (ANN) algorithm to market segmentation, there is a need of a comprehensive literature review and a classification system for it towards identification of future trend of market segmentation research. The present work is the first identifiable academic literature review of the application of neural network based techniques to segmentation. Our study has provided an academic database of literature between the periods of 2000-2010 and proposed a classification scheme for the articles. One thousands (1000) articles have been identified, and around 100 relevant selected articles have been subsequently reviewed and classified based on the major focus of each paper. Findings of this study indicated that the research area of ANN based applications are receiving most research attention and self organizing map based applications are second in position to be used in segmentation. The commonly used models for market segmentation are data mining, intelligent system etc. Our analysis furnishes a roadmap to guide future research and aid knowledge accretion and establishment pertaining to the application of ANN based techniques in market segmentation. Thus the present work will significantly contribute to both the industry and academic research in business and marketing as a sustainable valuable knowledge source of market segmentation with the future trend of ANN application in segmentation.