Towards High-throughput AI-based Segmentation in Oncological PET Imaging


Abstract in English

Artificial intelligence (AI) techniques for image-based segmentation have garnered much attention in recent years. Convolutional neural networks (CNNs) have shown impressive results and potential towards fully automated segmentation in medical imaging, and particularly PET imaging. To cope with the limited access to annotated data needed in supervised AI methods, given tedious and prone-to-error manual delineations, semi-supervised and unsupervised AI techniques have also been explored for segmentation of tumors or normal organs in single and bi-modality scans. This work provides a review of existing AI techniques for segmentation tasks and the evaluation criteria for translational AI-based segmentation efforts towards routine adoption in clinical workflows.

Download