No Arabic abstract
The phase diagram of the Al-Li system was determined by means of first principles calculations in combination with the cluster expansion formalism and statistical mechanics. The ground state phases were determined from first principles calculations of fcc and bcc configurations in the whole compositional range while the phase transitions as a function of temperature were ascertained from the thermodynamic grand potential and the Gibbs free energies of the phases. Overall, the calculated phase diagram was in good agreement with the currently accepted experimental phase diagram but the simulations provided new insights that are important to optimize microstructure of these alloys by means of heat treatments. In particular, the structure of the potential GP zones, made up of Al0.5Li0.5 (001) monolayers embedded in Al matrix, was identified. It was found that Al3Li is a stable phase although the energy barrier for the transformation of Al3Li into AlLi is very small (a few meV) and can be overcome by thermal vibrations. Moreover, bcc AlLi was found to be formed by martensitic transformation of fcc configurations and Al3Li precipitates stand for favorable sites for the nucleation of AlLi because they contain the basic blocks of such fcc ordering. Finally, polynomial expressions of the Gibbs free energies of the different phases as a function of temperature and composition were given, so they can be used in mesoscale simulations of precipitation in Al-Li alloys.
We investigate the temperature-pressure phase diagram of BaTiO_3 using a first-principles effective-Hamiltonian approach. We find that the zero-point motion of the ions affects the form of the phase diagram dramatically. Specifically, when the zero-point fluctuations are included in the calculations, all the polar (tetragonal, orthorhombic, and rhombohedral) phases of BaTiO_3 survive down to 0 K, while only the rhombohedral phase does otherwise. We provide a simple explanation for this behavior. Our results confirm the essential correctness of the phase diagram proposed by Ishidate et al. (Phys. Rev. Lett. 78, 2397 (1997)).
We studied for the first time the magnetic phase diagram of the rare-earth manganites series Gd$_{1-x}$Ca$_{x}$MnO$_{3}$ (GCMO) over the full concentration range based on density functional theory. GCMO has been shown to form solid solutions. We take into account this disordered character by adapting special quasi random structures at different concentration steps. The magnetic phase diagram is mainly described by means of the magnetic exchange interactions between the Mn sites and Monte Carlo simulations were performed to estimate the corresponding transition temperatures. They agree very well with recent experiments. The hole doped region $x<0.5$ shows a strong ferromagnetic ground state, which competes with A-type antiferromagnetism at higher Ca concentrations $x>0.6$.
Using density functional theory (DFT) based first principles calculations, we show that the preferred interfacial plane orientation relationship is determined by the strength of bonding at the interface. The thermodynamic stability, and the ideal tensile and shear strengths of Cu/TiN and Al/TiN interfaces are calculated. While there is a strong orientation relation (OR) preference for Al/TiN interface, there is no OR preference for Cu/TiN interface. Both the ideal tensile and shear strengths of Cu/TiN interfaces are lower than those of bulk Cu and TiN, suggesting such interfaces are weaker than their bulk components. By comparison, the ideal strengths of Al/TiN interface are comparable to the constituents in the bulk form. Such contrasting interfaces can be a test-bed for studying the role of interfaces in determining the mechanical behavior of the nanolayered structures.
We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures. Applying this method, in conjunction with density functional theory (DFT) based electronic, ionic and cell relaxation, we re-investigate two well known amorphous semiconductors, namely silicon and indium gallium zinc oxide (IGZO). We find that characteristic structural parameters like average bond length and bond angle are within $sim$ 2% to those reported by ab initio MD calculations and experimental studies.
The structural, elastic and electronic properties of ReN are investigated by first-principles calculations based on density functional theory. Two competing structures, i.e., CsCl-like and NiAs-like structures, are found and the most stable structure, NiAs-like, has a hexagonal symmetry which belongs to space group P63/mmc with a=2.7472 and c=5.8180 AA. ReN with hexagonal symmetry is a metal ultra-incompressible solid and has less elastic anisotropy. The ultra-incompressibility of ReN is attributed to its high valence electron density and strong covalence bondings. Calculations of density of states and charge density distribution, together with Mulliken atomic population analysis, show that the bondings of ReN should be a mixture of metallic, covalent, and ionic bondings. Our results indicate that ReN can be used as a potential ultra-incompressible conductor. In particular, we obtain a superconducting transition temperature T$_c$=4.8 K for ReN.