No Arabic abstract
We study axion dark matter production from a misalignment mechanism in scenarios featuring a general nonstandard cosmology. Before the onset of Big Bang nucleosynthesis, the energy density of the universe is dominated by a particle field $phi$ described by a general equation of state $omega$. The ensuing enhancement of the Hubble expansion rate decreases the temperature at which axions start to oscillate, opening this way the possibility for axions heavier than in the standard window. This is the case for kination, or in general for scenarios with $omega > 1/3$. However, if $omega < 1/3$, as in the case of an early matter domination, the decay of $phi$ injects additional entropy relative to the case of the standard model, diluting this way the preexisting axion abundance, and rendering lighter axions viable. For a misalignment angle $0.5 < theta_i < pi/sqrt{3}$, the usual axion window becomes expanded to $4 times 10^{-9}$ eV $lesssim m_a lesssim 2 times 10^{-5}$ eV for the case of an early matter domination, or to $2 times 10^{-6}$ eV $lesssim m_a lesssim 10^{-2}$ eV for the case of kination. Interestingly, the coupling axion-photon in such a wider range can be probed with next generation experiments such as ABRACADABRA, KLASH, ADMX, MADMAX, and ORGAN. Axion dark matter searches may therefore provide a unique tool to probe the history of the universe before Big Bang nucleosynthesis.
Many existing and proposed experiments targeting QCD axion dark matter (DM) can also search for a broad class of axion-like particles (ALPs). We analyze the experimental sensitivities to electromagnetically-coupled ALP DM in different cosmological scenarios with the relic abundance set by the misalignment mechanism. We obtain benchmark DM targets for the standard thermal cosmology, a pre-nucleosynthesis period of early matter domination, and a period of kination. These targets are theoretically simple and assume $mathcal{O}(1)$ misalignment angles, avoiding fine-tuning of the initial conditions. We find that some experiments will have sensitivity to these ALP DM targets before they are sensitive to the QCD axion, and others can potentially reach interesting targets below the QCD band. The ALP DM abundance also depends on the origin of the ALP mass. Temperature-dependent masses that are generated by strong dynamics (as for the QCD axion) correspond to DM candidates with smaller decay constants, resulting in even better detection prospects.
A number of proposed and ongoing experiments search for axion dark matter with a mass nearing the limit set by small scale structure (${cal O} ( 10 ^{ - 21 } {rm eV} ) $). We consider the late universe cosmology of these models, showing that requiring the axion to have a matter-power spectrum that matches that of cold dark matter constrains the magnitude of the axion couplings to the visible sector. Comparing these limits to current and future experimental efforts, we find that many searches require axions with an abnormally large coupling to Standard Model fields, independently of how the axion was populated in the early universe. We survey mechanisms that can alleviate the bounds, namely, the introduction of large charges, various forms of kinetic mixing, a clockwork structure, and imposing a discrete symmetry. We provide an explicit model for each case and explore their phenomenology and viability to produce detectable ultralight axion dark matter.
If there are a plethora of axions in nature, they may have a complicated potential and create an axion landscape. We study a possibility that one of the axions is so light that it is cosmologically stable, explaining the observed dark matter density. In particular we focus on a case in which two (or more) shift-symmetry breaking terms conspire to make the axion sufficiently light at the potential minimum. In this case the axion has a flat-bottomed potential. In contrast to the case in which a single cosine term dominates the potential, the axion abundance as well as its isocurvature perturbations are significantly suppressed. This allows an axion with a rather large mass to serve as dark matter without fine-tuning of the initial misalignment, and further makes higher-scale inflation to be consistent with the scenario.
We present an interesting Higgs portal model where an axion-like particle (ALP) couples to the Standard Model sector only via the Higgs field. The ALP becomes stable due to CP invariance and turns out to be a natural candidate for freeze-in dark matter because its properties are controlled by the perturbative ALP shift symmetry. The portal coupling can be generated non-perturbatively by a hidden confining gauge sector, or radiatively by new leptons charged under the ALP shift symmetry. Such UV completions generally involve a CP violating phase, which makes the ALP unstable and decay through mixing with the Higgs boson, but can be sufficiently suppressed in a natural way by invoking additional symmetries.
This Letter reports results from a haloscope search for dark matter axions with masses between 2.66 and 2.81 $mu$eV. The search excludes the range of axion-photon couplings predicted by plausible models of the invisible axion. This unprecedented sensitivity is achieved by operating a large-volume haloscope at sub-kelvin temperatures, thereby reducing thermal noise as well as the excess noise from the ultra-low-noise SQUID amplifier used for the signal power readout. Ongoing searches will provide nearly definitive tests of the invisible axion model over a wide range of axion masses.