LUXE-NPOD: new physics searches with an optical dump at LUXE


Abstract in English

We propose a novel way to search for feebly interacting massive particles, exploiting two properties of systems involving collisions between high energy electrons and intense laser pulses. The first property is that the electron-intense-laser collision results in a large flux of hard photons, as the laser behaves effectively as a thick medium. The second property is that the emitted photons free-stream inside the laser and thus for them the laser behaves effectively as a very thin medium. Combining these two features implies that the electron-intense-laser collision is an apparatus which can efficiently convert UV electrons to a large flux of hard, co-linear photons. We further propose to direct this unique large and hard flux of photons onto a physical dump which in turn is capable of producing feebly interacting massive particles, in a region of parameters that has never been probed before. We denote this novel apparatus as ``optical dump or NPOD (new physics search with optical dump). The proposed LUXE experiment at Eu.XFEL has all the required basic ingredients of the above experimental concept. We discuss how this concept can be realized in practice by adding a detector after the last physical dump of the experiment to reconstruct the two-photon decay product of a new spin-0 particle. We show that even with a relatively short dump, the search can still be background free. Remarkably, even with a 40 TW laser, which corresponds to the initial run, and definitely with a 350 TW laser, of the main run with one year of data taking, LUXE-NPOD will be able to probe uncharted territory of both models of pseudo-scalar and scalar fields, and in particular probe natural of scalar theories for masses above 100 MeV.

Download