Precisely understanding the business relationships between Autonomous Systems (ASes) is essential for studying the Internet structure. So far, many inference algorithms have been proposed to classify the AS relationships, which mainly focus on Peer-Peer (P2P) and Provider-Customer (P2C) binary classification and achieved excellent results. However, there are other types of AS relationships in actual scenarios, i.e., the businessbased sibling and structure-based exchange relationships, that were neglected in the previous research. These relationships are usually difficult to be inferred by existing algorithms because there is no discrimination on the designed features compared to the P2P or P2C relationships. In this paper, we focus on the multi-classification of AS relationships for the first time. We first summarize the differences between AS relationships under the structural and attribute features, and the reasons why multiple relationships are difficult to be inferred. We then introduce new features and propose a Graph Convolutional Network (GCN) framework, AS-GCN, to solve this multi-classification problem under complex scene. The framework takes into account the global network structure and local link features concurrently. The experiments on real Internet topological data validate the effectiveness of our method, i.e., AS-GCN achieves comparable results on the easy binary classification task, and outperforms a series of baselines on the more difficult multi-classification task, with the overall accuracy above 95%.