Do you want to publish a course? Click here

Persistent time lags in light curves of Sagittarius A*: evidence of outflow

108   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The compact radio source at the center of our Galaxy, Sagittarius A* (Sgr A*), is the subject of intensive study as it provides a close-up view of an accreting supermassive black hole. Sgr A* provides us with a prototype of a low-luminosity active galactic nucleus (LLAGN), but interstellar scattering and the resolution limits of our instruments have limited our understanding of the emission sites in its inner accretion flow. The temporal variability of Sgr A* can help us understand whether we see a plasma outflow or inflow in the region close to the black hole. In this work, we look at a comprehensive set of multi-epoch data recorded with the Karl G. Jansky Very Large Array (VLA) to understand the persistence of the time lag relations that have been found in previous radio observations of Sgr A*. We analyse 8 epochs of data, observed in Spring 2015, each of which has a frequency coverage from 18 to 48 GHz. We cross-correlate the calibrated light curves across twelve frequency subbands. We also generate synthetic data with the appropriate variability characteristics and use it to study the detectability of time lag relations in data with this sampling structure. We find that the variability amplitude increases with frequency. We see positive time lag slopes across all subbands in five out of eight epochs, with the largest slopes in the cases where a clear extremum in flux density is present. Three epochs show lag slopes close to zero. With the synthetic data analysis we show that these results are explained by a persistent lag relation of $sim$40 min/cm that covers the bulk of the variability, with at most 2 percent of the total flux density in an uncorrelated variability component. Together with the size-frequency relation and inclination constraints this indicates an outflow velocity with $gamma beta$ = 1.5, consistent with predictions of jet models for Sgr A*.



rate research

Read More

Radio and mm-wavelength observations of Sagittarius A* (Sgr A*), the radio source associated with the supermassive black hole at the center of our Galaxy, show that it behaves as a partially self-absorbed synchrotron-emitting source. The measured size of Sgr A* shows that the mm-wavelength emission comes from a small region and consists of the inner accretion flow and a possible collimated outflow. Existing observations of Sgr A* have revealed a time lag between light curves at 43 GHz and 22 GHz, which is consistent with a rapidly expanding plasma flow and supports the presence of a collimated outflow from the environment of an accreting black hole. Here we wish to measure simultaneous frequency-dependent time lags in the light curves of Sgr A* across a broad frequency range to constrain direction and speed of the radio-emitting plasma in the vicinity of the black hole. Light curves of Sgr A* were taken in May 2012 using ALMA at 100 GHz using the VLA at 48, 39, 37, 27, 25.5, and 19 GHz. As a result of elevation limits and the longitude difference between the stations, the usable overlap in the light curves is approximately four hours. Although Sgr A* was in a relatively quiet phase, the high sensitivity of ALMA and the VLA allowed us to detect and fit maxima of an observed minor flare where flux density varied by ~10%. The fitted times of flux density maxima at frequencies from 100 GHz to 19 GHz, as well as a cross-correlation analysis, reveal a simple frequency-dependent time lag relation where maxima at higher frequencies lead those at lower frequencies. Taking the observed size-frequency relation of Sgr A* into account, these time lags suggest a moderately relativistic (lower estimates: 0.5c for two-sided, 0.77c for one-sided) collimated outflow.
Sgr A*, the supermassive black hole (SMBH) at the center of our Milky Way Galaxy, is known to be a variable source of X-ray, near-infrared (NIR), and submillimeter (submm) radiation and therefore a prime candidate to study the electromagnetic radiation generated by mass accretion flow onto a black hole and/or a related jet. Disentangling the power source and emission mechanisms of this variability is a central challenge to our understanding of accretion flows around SMBHs. Simultaneous multiwavelength observations of the flux variations and their time correlations can play an important role in obtaining a better understanding of possible emission mechanisms and their origin. This paper presents observations of two flares that both apparently violate the previously established patterns in the relative timing of submm/NIR/X-ray flares from Sgr A*. One of these events provides the first evidence of coeval structure between NIR and submm flux increases, while the second event is the first example of the sequence of submm/X-ray/NIR flux increases all occurring within ~1 hr. Each of these two events appears to upend assumptions that have been the basis of some analytic models of flaring in Sgr A*. However, it cannot be ruled out that these events, even though unusual, were just coincidental. These observations demonstrate that we do not fully understand the origin of the multiwavelength variability of Sgr A*, and show that there is a continued and important need for long-term, coordinated, and precise multiwavelength observations of Sgr A* to characterize the full range of variability behavior.
We study the time lags between the continuum emission of quasars at different wavelengths, based on more than four years of multi-band ($g$, $r$, $i$, $z$) light-curves in the Pan-STARRS Medium Deep Fields. As photons from different bands emerge from different radial ranges in the accretion disk, the lags constrain the sizes of the accretion disks. We select 240 quasars with redshifts $z approx 1$ or $z approx 0.3$ that are relatively emission line free. The light curves are sampled from day to month timescales, which makes it possible to detect lags on the scale of the light crossing time of the accretion disks. With the code JAVELIN, we detect typical lags of several days in the rest frame between the $g$ band and the $riz$ bands. The detected lags are $sim 2-3$ times larger than the light crossing time estimated from the standard thin disk model, consistent with the recently measured lag in NGC5548 and micro-lensing measurements of quasars. The lags in our sample are found to increase with increasing luminosity. Furthermore, the increase in lags going from $g-r$ to $g-i$ and then to $g-z$ is slower than predicted in the thin disk model, particularly for high luminosity quasars. The radial temperature profile in the disk must be different from what is assumed. We also find evidence that the lags decrease with increasing line ratios between ultraviolet FeII lines and MgII, which may point to changes in the accretion disk structure at higher metallicity.
444 - Ting Li 2021
Inconsistent conclusions are obtained from recent active galactic nuclei (AGNs) accretion disk inter-band time-lag measurements. While some works show that the measured time lags are significantly larger (by a factor of $sim 3$) than the theoretical predictions of the Shakura & Sunyaev disk (SSD) model, others find that the time-lag measurements are consistent with (or only slightly larger than) that of the SSD model. These conflicting observational results might be symptoms of our poor understanding of AGN accretion physics. Here we show that sources with larger-than-expected time lags tend to be less-luminous AGNs. Such a dependence is unexpected if the inter-band time lags are attributed to the light-travel-time delay of the illuminating variable X-ray photons to the static SSD. If, instead, the measured inter-band lags are related not only to the static SSD but also to the outer broad emission-line regions (BLRs; e.g., the blended broad emission lines and/or diffuse continua), our result indicates that the contribution of the non-disk BLR to the observed UV/optical continuum decreases with increasing luminosity ($L$), i.e., an anti-correlation resembling the well-known Baldwin effect. Alternatively, we argue that the observed dependence might be a result of coherent disk thermal fluctuations as the relevant thermal timescale, $tau_{mathrm{TH}}propto L^{0.5}$. With future accurate measurements of inter-band time lags, the above two scenarios can be distinguished by inspecting the dependence of inter-band time lags upon either the BLR components in the variable spectra or the timescales.
Information on the structure around active galactic nuclei (AGN) has long been derived from measuring lags in their varying light output at different wavelengths. In principle, infrared data would reach to larger radii, potentially even probing reprocessed radiation in any surrounding dusty torus. In practice, this has proved challenging because high quality data are required to detect such variability, and the observations must stretch over a long period to probe the likely month-scale lags in variability. In addition, large numbers of sources would need to be observed to start searching for any patterns in such lags. Here, we show that the UKIDSS Ultra Deep Survey, built up from repeated observations over almost a decade, provides an ideal data set for such a study. For 94 sources identified as strongly-varying AGN within its square-degree field, we find that the K-band light curves systematically lag the J-band light curves by an average of around a month. The lags become smaller at higher redshift, consistent with the band shift to optical rest-frame emission. The less luminous AGN also display shorter lags, as would be expected if their physical size scales with luminosity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا