Do you want to publish a course? Click here

Homological Mirror Symmetry for the universal centralizers I: The adjoint group case

70   0   0.0 ( 0 )
 Added by Xin Jin
 Publication date 2021
  fields Physics
and research's language is English
 Authors Xin Jin




Ask ChatGPT about the research

We prove homological mirror symmetry for the universal centralizer $J_G$ (a.k.a Toda space), associated to any complex semisimple Lie group $G$. The A-side is a partially wrapped Fukaya category on $J_G$, and the B-side is the category of coherent sheaves on the categorical quotient of a dual maximal torus by the Weyl group action (with some modification if $G$ has a nontrivial center). This is the first and the main part of a two-part series, dealing with $G$ of adjoint type. The general case will be proved in the forthcoming second part [Jin2].



rate research

Read More

This is an expository article on the A-side of Kontsevichs Homological Mirror Symmetry conjecture. We give first a self-contained study of $A_infty$-categories and their homological algebra, and later restrict to Fukaya categories, with particular emphasis on the basics of the underlying Floer theory, and the geometric features therein. Finally, we place the theory in the context of mirror symmetry, building towards its main predictions.
We discuss homological mirror symmetry for the conifold from the point of view of the Strominger-Yau-Zaslow conjecture.
96 - Dmitry Galakhov 2021
We concentrate on a treatment of a Higgs-Coulomb duality as an absence of manifest phase transition between ordered and disordered phases of 2d $mathcal{N}=(2,2)$ theories. We consider these examples of QFTs in the Schrodinger picture and identify Hilbert spaces of BPS states with morphisms in triangulated Abelian categories of D-brane boundary conditions. As a result of Higgs-Coulomb duality D-brane categories on IR vacuum moduli spaces are equivalent, this resembles an analog of homological mirror symmetry. Following construction ideas behind the Gaiotto-Moore-Witten algebra of the infrared one is able to introduce interface defects in these theories and associate them to D-brane parallel transport functors. We concentrate on surveying simple examples, analytic when possible calculations, numerical estimates and simple physical picture behind curtains of geometric objects. Categorification of hypergeometric series analytic continuation is derived as an Atiyah flop of the conifold. Finally we arrive to an interpretation of the braid group action on the derived category of coherent sheaves on cotangent bundles to flag varieties as a categorification of Berry connection on the Fayet-Illiopolous parameter space of a sigma-model with a quiver variety target space.
104 - Jake P. Solomon 2018
Consider a Maslov zero Lagrangian submanifold diffeomorphic to a Lie group on which an anti-symplectic involution acts by the inverse map of the group. We show that the Fukaya $A_infty$ endomorphism algebra of such a Lagrangian is quasi-isomorphic to its de Rham cohomology tensored with the Novikov field. In particular, it is unobstructed, formal, and its Floer and de Rham cohomologies coincide. Our result implies that the smooth fibers of a large class of singular Lagrangian fibrations are unobstructed and their Floer and de Rham cohomologies coincide. This is a step in the SYZ and family Floer cohomology approaches to mirror symmetry. More generally, our result continues to hold if the Lagrangian has cohomology the free graded algebra on a graded vector space $V$ concentrated in odd degree, and the anti-symplectic involution acts on the cohomology of the Lagrangian by the induced map of negative the identity on $V.$ It suffices for the Maslov class to vanish modulo $4.$
108 - Kyler Siegel 2019
We present recursive formulas which compute the recently defined higher symplectic capacities for all convex toric domains. In the special case of four-dimensional ellipsoids, we apply homological perturbation theory to the associated filtered L-infinity algebras and prove that the resulting structure coefficients count punctured pseudoholomorphic curves in cobordisms between ellipsoids. As sample applications, we produce new previously inaccessible obstructions for stabilized embeddings of ellipsoids and polydisks, and we give new counts of curves with tangency constraints.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا