Do you want to publish a course? Click here

C3O: Collaborative Cluster Configuration Optimization for Distributed Data Processing in Public Clouds

107   0   0.0 ( 0 )
 Added by Jonathan Will
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Distributed dataflow systems enable data-parallel processing of large datasets on clusters. Public cloud providers offer a large variety and quantity of resources that can be used for such clusters. Yet, selecting appropriate cloud resources for dataflow jobs - that neither lead to bottlenecks nor to low resource utilization - is often challenging, even for expert users such as data engineers. We present C3O, a collaborative system for optimizing data processing cluster configurations in public clouds based on shared historical runtime data. The shared data is utilized for predicting the runtimes of data processing jobs on different possible cluster configurations, using specialized regression models. These models take the diverse execution contexts of different users into account and exhibit mean absolute errors below 3% in our experimental evaluation with 930 unique Spark jobs.



rate research

Read More

107 - Z. Akbar , L.T. Handoko 2007
We introduce an optimization algorithm for resource allocation in the LIPI Public Cluster to optimize its usage according to incoming requests from users. The tool is an extended and modified genetic algorithm developed to match specific natures of public cluster. We present a detail analysis of optimization, and compare the results with the exact calculation. We show that it would be very useful and could realize an automatic decision making system for public clusters.
Hundreds of millions of network cameras have been installed throughout the world. Each is capable of providing a vast amount of real-time data. Analyzing the massive data generated by these cameras requires significant computational resources and the demands may vary over time. Cloud computing shows the most promise to provide the needed resources on demand. In this article, we investigate how to allocate cloud resources when analyzing real-time data streams from network cameras. A resource manager considers many factors that affect its decisions, including the types of analysis, the number of data streams, and the locations of the cameras. The manager then selects the most cost-efficient types of cloud instances (e.g. CPU vs. GPGPU) to meet the computational demands for analyzing streams. We evaluate the effectiveness of our approach using Amazon Web Services. Experiments demonstrate more than 50% cost reduction for real workloads.
IceCube is a one-gigaton instrument located at the geographic South Pole, designed to detect cosmic neutrinos, iden- tify the particle nature of dark matter, and study high-energy neutrinos themselves. Simulation of the IceCube detector and processing of data require a significant amount of computational resources. IceProd is a distributed management system based on Python, XML-RPC and GridFTP. It is driven by a central database in order to coordinate and admin- ister production of simulations and processing of data produced by the IceCube detector. IceProd runs as a separate layer on top of other middleware and can take advantage of a variety of computing resources, including grids and batch systems such as CREAM, Condor, and PBS. This is accomplished by a set of dedicated daemons that process job submission in a coordinated fashion through the use of middleware plugins that serve to abstract the details of job submission and job management from the framework.
Input data for applications that run in cloud computing centres can be stored at distant repositories, often with multiple copies of the popular data stored at many sites. Locating and retrieving the remote data can be challenging, and we believe that federating the storage can address this problem. A federation would locate the closest copy of the data on the basis of GeoIP information. Currently we are using the dynamic data federation Dynafed, a software solution developed by CERN IT. Dynafed supports several industry standards for connection protocols like Amazons S3, Microsofts Azure, as well as WebDAV and HTTP. Dynafed functions as an abstraction layer under which protocol-dependent authentication details are hidden from the user, requiring the user to only provide an X509 certificate. We have setup an instance of Dynafed and integrated it into the ATLAS data distribution management system. We report on the challenges faced during the installation and integration. We have tested ATLAS analysis jobs submitted by the PanDA production system and we report on our first experiences with its operation.
We present Memtrade, the first memory disaggregation system for public clouds. Public clouds introduce a set of unique challenges for resource disaggregation across different tenants, including security, isolation and pricing. Memtrade allows producer virtual machines (VMs) to lease both their unallocated memory and allocated-but-idle application memory to remote consumer VMs for a limited period of time. Memtrade does not require any modifications to host-level system software or support from the cloud provider. It harvests producer memory using an application-aware control loop to form a distributed transient remote memory pool with minimal performance impact; it employs a broker to match producers with consumers while satisfying performance constraints; and it exposes the matched memory to consumers as a secure KV cache. Our evaluation using real-world cluster traces shows that Memtrade provides significant performance benefit for consumers (improving average read latency up to 2.8x) while preserving confidentiality and integrity, with little impact on producer applications (degrading performance by less than 2.1%).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا