Quantum state tomography of molecules by ultrafast diffraction


Abstract in English

Ultrafast electron diffraction and time-resolved serial crystallography are the basis of the ongoing revolution in capturing at the atomic level of detail the structural dynamics of molecules. However, most experiments employ the classical ball-and-stick depictions, and the information of molecular quantum states, such as the density matrix, is missing. Here, we introduce a framework for the preparation and ultrafast coherent diffraction from rotational wave packets of molecules, and we establish a new variant of quantum state tomography for ultrafast electron diffraction to characterize the molecular quantum states. The ability to reconstruct the density matrix of molecules of arbitrary degrees of freedom will provide us with an unprecedentedly clear view of the quantum states of molecules, and enable the visualization of effects dictated by the quantum dynamics of molecules.

Download