Do you want to publish a course? Click here

Stirring Speeds Up Chemical Reaction

75   0   0.0 ( 0 )
 Added by Siming He
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We consider absorbing chemical reactions in a fluid current modeled by the coupled advection-reaction-diffusion equations. In these systems, the interplay between chemical diffusion and fluid transportation causes the enhanced dissipation phenomenon. We show that the enhanced dissipation time scale, together with the reaction coupling strength, determines the characteristic time scale of the reaction.



rate research

Read More

Spatially periodic reaction-diffusion equations typically admit pulsating waves which describe the transition from one steady state to another. Due to the heterogeneity, in general such an equation is not invariant by rotation and therefore the speed of the pulsating wave may a priori depend on its direction. However, little is actually known in the literature about whether it truly does: surprisingly, it is even known in the one-dimensional monostable Fisher-KPP case that the speed is the same in the opposite directions despite the lack of symmetry. Here we investigate this issue in the bistable case and show that the set of admissible speeds is actually rather large, which means that the shape of propagation may indeed be asymmetrical. More precisely, we show in any spatial dimension that one can choose an arbitrary large number of directions , and find a spatially periodic bistable type equation to achieve any combination of speeds in those directions, provided those speeds have the same sign. In particular, in spatial dimension 1 and unlike the Fisher-KPP case, any pair of (either nonnegative or nonpositive) rightward and leftward wave speeds is admissible. We also show that these variations in the speeds of bistable pulsating waves lead to strongly asymmetrical situations in the multistable equations.
126 - Franc{c}ois Hamel 2021
This paper is devoted to the study of the large time dynamics of bounded solutions of reaction-diffusion equations with unbounded initial support in R N. We first prove a general Freidlin-G{a}rtner type formula for the spreading speeds of the solutions in any direction. This formula holds under general assumptions on the reaction and for solutions emanating from initial conditions with general unbounded support, whereas most of earlier results were concerned with more specific reactions and compactly supported or almost-planar initial conditions. We also prove some results of independent interest on some conditions guaranteeing the spreading of solutions with large initial support and the link between these conditions and the existence of traveling fronts with positive speed. Furthermore, we show some flattening properties of the level sets of the solutions if initially supported on subgraphs. We also investigate the special case of asymptotically conical-shaped initial conditions. For Fisher-KPP equations, we prove some asymptotic one-dimensional symmetry properties for the elements of the $Omega$-limit set of the solutions, in the spirit of a conjecture of De Giorgi for stationary solutions of Allen-Cahn equations. Lastly, we show some logarithmicin-time estimates of the lag of the position of the solutions with respect to that of a planar front with minimal speed, for initial conditions which are supported on subgraphs with logarithmic growth at infinity. The proofs use a mix of ODE and PDE methods, as well as some geometric arguments. The paper also contains some related conjectures and open problems.
105 - Arnaud Ducrot 2019
We investigate spreading properties of solutions of a large class of two-component reaction-diffusion systems, including prey-predator systems as a special case. By spreading properties we mean the long time behaviour of solution fronts that start from localized (i.e. compactly supported) initial data. Though there are results in the literature on the existence of travelling waves for such systems, very little has been known-at least theoretically-about the spreading phenomena exhibited by solutions with compactly supported initial data. The main difficulty comes from the fact that the comparison principle does not hold for such systems. Furthermore, the techniques that are known for travelling waves such as fixed point theorems and phase portrait analysis do not apply to spreading fronts. In this paper, we first prove that spreading occurs with definite spreading speeds. Intriguingly, two separate fronts of different speeds may appear in one solution-one for the prey and the other for the predator-in some situations.
In this paper, the applicability of the entropy method for the trend towards equilibrium for reaction-diffusion systems arising from first order chemical reaction networks is studied. In particular, we present a suitable entropy structure for weakly reversible reaction networks without detail balance condition. We show by deriving an entropy-entropy dissipation estimate that for any weakly reversible network each solution trajectory converges exponentially fast to the unique positive equilibrium with computable rates. This convergence is shown to be true even in cases when the diffusion coefficients all but one species are zero. For non-weakly reversible networks consisting of source, transmission and target components, it is shown that species belonging to a source or transmission component decay to zero exponentially fast while species belonging to a target component converge to the corresponding positive equilibria, which are determined by the dynamics of the target component and the mass injected from other components. The results of this work, in some sense, complete the picture of trend to equilibrium for first order chemical reaction networks.
In the present paper, we study the Cauchy problem for the weakly coupled system of the generalized Tricomi equations with multiple propagation speeds. Our aim of this paper is to prove a small data blow-up result and an upper estimate of lifespan of the problem for a suitable compactly supported initial data in the subcritical and critical cases of the Strauss type. The proof is based on the framework of the argument in the paper [17]. One of our new contributions is to construct two families of special solutions to the free equation (see (2.16) or (2.18) as the test functions and prove their several properties. We emphasize that the system with two different propagation speeds is treated in this paper and the assumption on the initial data is improved from the point-wise positivity to the integral positivity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا