No Arabic abstract
We predict that cyanoacetylene (HC$_3$N) is produced photochemically in the atmosphere of GJ 1132 b in abundances detectable by the James Webb Space Telescope (JWST), assuming that the atmosphere is as described by Swain et al. (2021). First, we construct line list and cross-sections for HC$_3$N. Then we apply these cross-sections and the model atmosphere of Swain et al. (2021) to a radiative transfer model in order to simulate the transmission spectrum of GJ 1132 b as it would be seen by JWST, accounting for the uncertainty in the retrieved abundances. We predict that cyanoacetylene features at various wavelengths, with a clear lone feature at 4.5 $mu$m, observable by JWST after four transits. This feature persists within the $1-sigma$ uncertainty of the retrieved abundances of HCN and CH$_4$.
Previous investigations have employed more than 100 close observations of Titan by the Cassini orbiter to elucidate connections between the production and distribution of Titans vast, organic-rich chemical inventory and its atmospheric dynamics. However, as Titan transitions into northern summer, the lack of incoming data from the Cassini orbiter presents a potential barrier to the continued study of seasonal changes in Titans atmosphere. In our previous work (Thelen et al., 2018), we demonstrated that the Atacama Large Millimeter/submillimeter Array (ALMA) is well suited for measurements of Titans atmosphere in the stratosphere and lower mesosphere (~100-500 km) through the use of spatially resolved (beam sizes <1) flux calibration observations of Titan. Here, we derive vertical abundance profiles of four of Titans trace atmospheric species from the same 3 independent spatial regions across Titans disk during the same epoch (2012 to 2015): HCN, HC$_3$N, C$_3$H$_4$, and CH$_3$CN. We find that Titans minor constituents exhibit large latitudinal variations, with enhanced abundances at high latitudes compared to equatorial measurements; this includes CH$_3$CN, which eluded previous detection by Cassini in the stratosphere, and thus spatially resolved abundance measurements were unattainable. Even over the short 3-year period, vertical profiles and integrated emission maps of these molecules allow us to observe temporal changes in Titans atmospheric circulation during northern spring. Our derived abundance profiles are comparable to contemporary measurements from Cassini infrared observations, and we find additional evidence for subsidence of enriched air onto Titans south pole during this time period. Continued observations of Titan with ALMA beyond the summer solstice will enable further study of how Titans atmospheric composition and dynamics respond to seasonal changes.
Atmospheric temperature and mixing ratio profiles of terrestrial planets vary with the spectral energy flux distribution for different types of M-dwarf stars and the planetary gravity. We investigate the resulting effects on the spectral appearance of molecular absorption bands, that are relevant as indicators for potential planetary habitability during primary and secondary eclipse for transiting terrestrial planets with Earth-like biomass emissions. Atmospheric profiles are computed using a plane-parallel, 1D climate model coupled with a chemistry model. We then calculate simulated spectra using a line-by-line radiative transfer model. We find that emission spectra during secondary eclipse show increasing absorption of methane, water and ozone for planets orbiting quiet M0-M3 dwarfs and the active M-type star AD Leo compared to solar type central stars. However, for planets orbiting very cool and quiet M dwarfs (M4 to M7), increasing temperatures in the mid-atmosphere lead to reduced absorption signals, making the detection of molecules more difficult in such scenarios. Transmission spectra during primary eclipse show strong absorption features of CH4, N2O and H2O for planets orbiting quiet M0-M7 stars and AD Leo. The N2O absorption of an Earth-sized planet orbiting a quiet M7 star can even be as strong as the CO2 signal. However, ozone absorption decreases for planets orbiting such cool central stars due to chemical effects in the atmosphere. To investigate the effect on the spectroscopic detection of absorption bands with potential future satellite missions, we compute signal-to-noise-ratios (SNR) for a James Webb Space Telescope (JWST)-like aperture telescope.
Hydrogen cyanide (HCN) is a key feedstock molecule for the production of lifes building blocks. The formation of HCN in an N$_2$-rich atmospheres requires first that the triple bond between N$equiv$N be severed, and then that the atomic nitrogen find a carbon atom. These two tasks can be accomplished via photochemistry, lightning, impacts, or volcanism. The key requirements for producing appreciable amounts of HCN are the free availability of N$_2$ and a local carbon to oxygen ratio of C/O $geq 1$. We discuss the chemical mechanisms by which HCN can be formed and destroyed on rocky exoplanets with Earth-like N$_2$ content and surface water inventories, varying the oxidation state of the dominant carbon-containing atmospheric species. HCN is most readily produced in an atmosphere rich in methane (CH$_4$) or acetylene (C$_2$H$_2$), but can also be produced in significant amounts ($> 1$ ppm) within CO-dominated atmospheres. Methane is not necessary for the production of HCN. We show how destruction of HCN in a CO$_2$-rich atmosphere depends critically on the poorly-constrained energetic barrier for the reaction of HCN with atomic oxygen. We discuss the implications of our results for detecting photochemically produced HCN, for concentrating HCN on the planets surface, and its importance for prebiotic chemistry.
The origin of life on Earth seems to demand a highly reduced early atmosphere, rich in CH4, H2, and NH3, but geological evidence suggests that Earths mantle has always been relatively oxidized and its emissions dominated by CO2 H2O, and N2. The paradox can be resolved by exploiting the reducing power inherent in the late veneer, i.e., material accreted by Earth after the Moon-forming impact. Isotopic evidence indicates that the late veneer consisted of extremely dry, highly reduced inner solar system materials, suggesting that Earths oceans were already present when the late veneer came. The major primary product of reaction between the late veneers iron and Earths water was H2. Ocean vaporizing impacts generate high pressures and long cooling times that favor CH4 and NH3. Impacts too small to vaporize the oceans are much less productive of CH4 and NH3, unless (i) catalysts were available to speed their formation, or (ii) additional reducing power was extracted from pre-existing crustal or mantle materials. The transient H2-CH4 atmospheres evolve photochemically to generate nitrogenated hydrocarbons at rates determined by solar radiation and hydrogen escape, on timescales ranging up to tens of millions of years and with cumulative organic production ranging up to half a kilometer. Roughly one ocean of hydrogen escapes. The atmosphere after the methanes gone is typically H2 and CO rich, with eventual oxidation to CO2 rate-limited by water photolysis and hydrogen escape.
We present the first maps of cyanoacetylene isotopologues in Titans atmosphere, including H$^{13}$CCCN and HCCC$^{15}$N, detected in the 0.9 mm band using the Atacama Large Millimeter/submillimeter array (ALMA) around the time of Titans (southern winter) solstice in May 2017. The first high-resolution map of HC$_3$N in its $v_7=1$ vibrationally excited state is also presented, revealing a unique snapshot of the global HC$_3$N distribution, free from the strong optical depth effects that adversely impact the ground-state ($v=0$) map. The HC$_3$N emission is found to be strongly enhanced over Titans south pole (by a factor of 5.7 compared to the north pole), consistent with rapid photochemical loss of HC$_3$N from the summer hemisphere combined with production and transport to the winter pole since the April 2015 ALMA observations. The H$^{13}$CCCN/HCCC$^{15}$N flux ratio is derived at the southern HC$_3$N peak, and implies an HC$_3$N/HCCC$^{15}$N ratio of $67pm14$. This represents a significant enrichment in $^{15}$N compared with Titans main molecular nitrogen reservoir, which has a $^{14}$N/$^{15}$N ratio of 167, and confirms the importance of photochemistry in determining the nitrogen isotopic ratio in Titans organic inventory.