Do you want to publish a course? Click here

Interacting Stellar EMRIs as Sources of Quasi-Periodic Eruptions in Galactic Nuclei

72   0   0.0 ( 0 )
 Added by Brian Metzger
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

A star that approaches a supermassive black hole (SMBH) on a circular extreme mass ratio inspiral (EMRI) can undergo Roche lobe overflow (RLOF), resulting in a phase of long-lived mass-transfer onto the SMBH. If the interval separating consecutive EMRIs is less than the mass-transfer timescale driven by gravitational wave emission (typically ~1-10 Myr), the semi-major axes of the two stars will approach each another on scales of <~ hundreds to thousands of gravitational radii. Close flybys tidally strip gas from one or both RLOFing stars, briefly enhancing the mass-transfer rate onto the SMBH and giving rise to a flare of transient X-ray emission. If both stars reside in an common orbital plane, these close interactions will repeat on a timescale as short as hours, generating a periodic series of flares with properties (amplitudes, timescales, sources lifetimes) remarkably similar to the quasi-periodic eruptions (QPEs) recently observed from galactic nuclei hosting low-mass SMBHs. A cessation of QPE activity is predicted on a timescale of months to years, due to nodal precession of the EMRI orbits out of alignment by the SMBH spin. Channels for generating the requisite coplanar EMRIs include the tidal separation of binaries (Hills mechanism) or Type I inwards migration through a gaseous AGN disk. Alternative scenarios for QPEs, that invoke single stellar EMRIs on an eccentric orbit undergoing a runaway sequence of RLOF events, are strongly disfavored by formation rate constraints.



rate research

Read More

In the past two decades, high amplitude electromagnetic outbursts have been detected from dormant galaxies and often attributed to the tidal disruption of a star by the central black hole. X-ray emission from the Seyfert 2 galaxy GSN 069 (2MASX J01190869-3411305) at redshift z = 0.018 was first detected in 2010 July and implies an X-ray brightening of more than a factor of 240 over ROSAT observations performed 16 years earlier. The emission has smoothly decayed over time since 2010, possibly indicating a long-lived tidal disruption event. The X-ray spectrum is ultra-soft and can be described by accretion disc emission with luminosity proportional to the fourth power of the disc temperature during long-term evolution. Here we report observations of X-ray quasi-periodic eruptions from the nucleus of GSN 069 over the course of 54 days, 2018 December onwards. During these eruptions, the X-ray count rate increases by up to two orders of magnitude with event duration of just over 1 hour and recurrence time of about 9 hours. These eruptions are associated with fast spectral transitions between a cold and a warm phase in the accretion flow around a low-mass black hole (of approximately 4x10$^5$ solar masses) with peak X-ray luminosity of ~ 5x10$^{42}$ ergs per second. The warm phase has a temperature of about 120 eV, reminiscent of the typical soft X-ray excess, an almost universal thermal-like feature in the X-ray spectra of luminous active nuclei. If the observed properties are not unique to GSN 069, and assuming standard scaling of timescales with black hole mass and accretion properties, typical active galactic nuclei with more massive black holes can be expected to exhibit high-amplitude optical to X-ray variability on timescales as short as months or years.
Quasi-Periodic Eruptions (QPEs) are extreme high-amplitude bursts of X-ray radiation recurring every few hours and originating near the central supermassive black holes in galactic nuclei. It is currently unknown what triggers these events, how long they last and how they are connected to the physical properties of the inner accretion flows. Previously, only two such sources were known, found either serendipitously or in archival data, with emission lines in their optical spectra classifying their nuclei as hosting an actively accreting supermassive black hole. Here we present the detection of QPEs in two further galaxies, obtained with a blind and systematic search over half of the X-ray sky. The optical spectra of these galaxies show no signature of black hole activity, indicating that a pre-existing accretion flow typical of active nuclei is not required to trigger these events. Indeed, the periods, amplitudes and profiles of the newly discovered QPEs are inconsistent with current models that invoke radiation-pressure driven accretion disk instabilities. Instead, QPEs might be driven by an orbiting compact object. Furthermore, their observed properties require the mass of the secondary object to be much smaller than the main body and future X-ray observations may constrain possible changes in the period due to orbital evolution. This scenario could make QPEs a viable candidate for the electromagnetic counterparts of the so-called extreme mass ratio inspirals, with considerable implications for multi-messenger astrophysics and cosmology.
Quasi-periodic eruptions (QPEs), which are a new kind of X-ray bursts with the recurrence time of several hours, have been detected from the central supermassive black holes (SMBHs) of galactic nuclei, both active and quiescent. Recently, the two newly QPEs discovered by the eROSITA show asymmetric light curves with a fast rise and a slow decline. Current models cannot explain the observational characteristics of QPEs. Here we show that QPEs can be generated from the Roche lobe overflows at each pericentre passage of an evolved star orbiting an SMBH. The evolved stars with masses of $1-10~M_odot$, which have lost Hydrogen envelopes in the post asymptotic giant branch phase, can fulfill the requirement to produce the properties of QPEs, including the fast rise and slow decay light curves, periods, energetics, and rates. Furthermore, the extreme mass ratio $sim 10^5$ between the SMBH and the companion star will produce millihertz gravitational waves, called extreme mass-ratio inspirals (EMRIs). These QPEs would be detected as EMRI sources with electromagnetic counterparts for space-based GW detectors, such as Laser Interferometer Space Antenna (LISA) and Tianqin. They would provide a new way to measure the Hubble constant and further test the so-called Hubble constant tension.
281 - Jacco Vink 2012
The origin of cosmic rays holds still many mysteries hundred years after they were first discovered. Supernova remnants have for long been the most likely sources of Galactic cosmic rays. I discuss here some recent evidence that suggests that supernova remnants can indeed efficiently accelerate cosmic rays. For this conference devoted to the Astronomical Institute Utrecht I put the emphasis on work that was done in my group, but placed in a broader context: efficient cosmic-ray acceleration and the im- plications for cosmic-ray escape, synchrotron radiation and the evidence for magnetic- field amplification, potential X-ray synchrotron emission from cosmic-ray precursors, and I conclude with the implications of cosmic-ray escape for a Type Ia remnant like Tycho and a core-collapse remnant like Cas A.
We consider the origins of enigmatic stellar populations in four Local Group galactic nuclei, specifically the Milky Way, M31, M32 and M33. These are centrally concentrated blue stars, found in three out of the four nuclear star clusters (NSCs) considered here. Their origins are unknown, but could include blue straggler (BS) stars, extended horizontal branch stars and young recently formed stars. Here, we calculate order-of-magnitude estimates for various collision rates, as a function of the host NSC environment and distance from the cluster centre. These rates are sufficiently high that BSs, formed via collisions between main sequence (MS) stars, could contribute non-negligibly ($sim$ 1-10% in mass) to every surface brightness profile, with the exception of the Milky Way. Stellar evolution models show that the envelopes of red giant branch (RGB) stars must be nearly completely stripped to significantly affect their photometric appearance, which requires multiple collisions. Hence, the collision rates for individual RGB stars are only sufficiently high in the inner $lesssim$ 0.1 pc of M31 and M32 for RGB destruction to occur. Collisions between white dwarfs and MS stars, which should ablate the stars, could offer a steady and significant supply of gas in every NSC in our sample. The gas could either fragment to form new stars, or accrete onto old MS stars already present. Thus, collisional processes could contribute significantly to the observed blue excesses in M31 and M33; future studies should be aimed at better constraining theoretical predictions to compliment existing and future observational data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا