Conformal invariance of double random currents and the XOR-Ising model I: identification of the limit


Abstract in English

This is the first of two papers devoted to the proof of conformal invariance of the critical double random current and the XOR-Ising models on the square lattice. More precisely, we show the convergence of loop ensembles obtained by taking the cluster boundaries in the sum of two independent currents with free and wired boundary conditions, and in the XOR-Ising models with free and plus/plus boundary conditions. Therefore we establish Wilsons conjecture on the XOR-Ising model. The strategy, which to the best of our knowledge is different from previous proofs of conformal invariance, is based on the characterization of the scaling limit of these loop ensembles as certain local sets of the Gaussian Free Field. In this paper, we identify uniquely the possible subsequential limits of the loop ensembles. Combined with the second paper, this completes the proof of conformal invariance.

Download