Do you want to publish a course? Click here

Practical quantum multiparty signatures using quantum key distribution networks

74   0   0.0 ( 0 )
 Added by Aleksey Fedorov
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Digital signatures are widely used for providing security of communications. At the same time, the security of currently deployed digital signature protocols is based on unproven computational assumptions. An efficient way to ensure an unconditional (information-theoretic) security of communication is to use quantum key distribution (QKD), whose security is based on laws of quantum mechanics. In this work, we develop an unconditionally secure signatures (USS) scheme that guarantees authenticity and transferability of arbitrary length messages in a QKD network. In the proposed setup, the QKD network consists of two subnetworks: (i) the internal network that includes the signer and with limitation on the number of malicious nodes, and (ii) the external one that has no assumptions on the number of malicious nodes. A price of the absence of the trust assumption in the external subnetwork is a necessity of the assistance from internal subnetwork recipients for the verification of message-signature pairs by external subnetwork recipients. We provide a comprehensive security analysis of the developed scheme, perform an optimization of the scheme parameters with respect to the secret key consumption, and demonstrate that the developed scheme is compatible with the capabilities of currently available QKD devices.



rate research

Read More

We describe systems and methods for the deployment of global quantum key distribution (QKD) networks covering transoceanic, long-haul, metro, and access segments of the network. A comparative study of the state-of-the-art QKD technologies is carried out, including both terrestrial QKD via optical fibers and free-space optics, as well as spaceborne solutions via satellites. We compare the pros and cons of various existing QKD technologies, including channel loss, potential interference, distance, connection topology, deployment cost and requirements, as well as application scenarios. Technical selection criteria and deployment requirements are developed for various different QKD solutions in each segment of networks. For example, optical fiber-based QKD is suitable for access networks due to its limited distance and compatibility with point-to-multipoint (P2MP) topology; with the help of trusted relays, it can be extended to long-haul and metro networks. Spaceborne QKD on the other hand, has much smaller channel loss and extended transmission distance, which can be used for transoceanic and long-haul networks exploiting satellite-based trusted relays.
Quantum key distribution (QKD) gradually has become a crucial element of practical secure communication. In different scenarios, the security analysis of genuine QKD systems is complicated. A universal secret key rate calculation method, used for realistic factors such as multiple degrees of freedom encoding, asymmetric protocol structures, equipment flaws, environmental noise, and so on, is still lacking. Based on the correlations of statistical data, we propose a security analysis method without restriction on encoding schemes. This method makes a trade-off between applicability and accuracy, which can effectively analyze various existing QKD systems. We illustrate its ability by analyzing source flaws and a high-dimensional asymmetric protocol. Results imply that our method can give tighter bounds than the Gottesman-Lo-Lutkenhaus-Preskill (GLLP) analysis and is beneficial to analyze protocols with complex encoding structures. Our work has the potential to become a reference standard for the security analysis of practical QKD.
Untrusted node networks initially implemented by measurement-device-independent quantum key distribution (MDI-QKD) protocol are a crucial step on the roadmap of the quantum Internet. Considering extensive QKD implementations of trusted node networks, a workable upgrading tactic of existing networks toward MDI networks needs to be explicit. Here, referring to the nonstandalone (NSA) network of 5G, we propose an NSA-MDI scheme as an evolutionary selection for existing phase-encoding BB84 networks. Our solution can upgrade the BB84 networks and terminals that employ various phase-encoding schemes to immediately support MDI without hardware changes. This cost-effective upgrade effectively promotes the deployment of MDI networks as a step of untrusted node networks while taking full advantage of existing networks. In addition, the diversified demands on security and bandwidth are satisfied, and network survivability is improved.
Quantum key distribution (QKD) is the first quantum information task to reach the level of mature technology, already fit for commercialization. It aims at the creation of a secret key between authorized partners connected by a quantum channel and a classical authenticated channel. The security of the key can in principle be guaranteed without putting any restriction on the eavesdroppers power. The first two sections provide a concise up-to-date review of QKD, biased toward the practical side. The rest of the paper presents the essential theoretical tools that have been developed to assess the security of the main experimental platforms (discrete variables, continuous variables and distributed-phase-reference protocols).
The lists of bits processed in quantum key distribution are necessarily of finite length. The need for finite-key unconditional security bounds has been recognized long ago, but the theoretical tools have become available only very recently. We provide finite-key unconditional security bounds for two practical implementations of the Bennett-Brassard 1984 coding: prepare-and-measure implementations without decoy states, and entanglement-based implementations. A finite-key bound for prepare-and-measure implementations with decoy states is also derived under a simplified treatment of the statistical fluctuations. The presentation is tailored to allow direct application of the bounds in experiments. Finally, the bounds are also evaluated on a priori reasonable expected values of the observed parameters.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا