Do you want to publish a course? Click here

A finite element method for simulating soft active non-shearable rods immersed in generalized Newtonian fluids

90   0   0.0 ( 0 )
 Added by Roberto Ausas Dr.
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We propose a finite element method for simulating one-dimensional solid models moving and experiencing large deformations while immersed in generalized Newtonian fluids. The method is oriented towards applications involving microscopic devices or organisms in the soft-bio-matter realm. By considering that the strain energy of the solid may explicitly depend on time, we incorporate a mechanism for active response. The solids are modeled as Cosserat rods, a detailed formulation being provided for the special case of a planar non-shearable rod. The discretization adopts one-dimensional Hermite elements for the rod and low-order Lagrange two-dimensional elements for the fluids velocity and pressure. The fluid mesh is boundary-fitted, with remeshing at each time step. Several time marching schemes are studied, of which a semi-implicit scheme emerges as most effective. The method is demonstrated in very challenging examples: the roll-up of a rod to circular shape and later sudden release, the interaction of a soft rod with a fluid jet and the active self-locomotion of a sperm-like rod. The article includes a detailed description of a code that implements the method in the Firedrake library.



rate research

Read More

In this paper, we design and analyze a Hybrid High-Order discretization method for the steady motion of non-Newtonian, incompressible fluids in the Stokes approximation of small velocities. The proposed method has several appealing features including the support of general meshes and high-order, unconditional inf-sup stability, and orders of convergence that match those obtained for Leray-Lions scalar problems. A complete well-posedness and convergence analysis of the method is carried out under new, general assumptions on the strain rate-shear stress law, which encompass several common examples such as the power-law and Carreau-Yasuda models. Numerical examples complete the exposition.
In this paper, we consider an online enrichment procedure using the Generalized Multiscale Finite Element Method (GMsFEM) in the context of a two-phase flow model in heterogeneous porous media. The coefficient of the elliptic equation is referred to as the permeability and is the main source of heterogeneity within the model. The elliptic pressure equation is solved using online GMsFEM, and is coupled with a hyperbolic transport equation where local conservation of mass is necessary. To satisfy the conservation property, we aim at constructing conservative fluxes within the space of multiscale basis functions through the use of a postprocessing technique. In order to improve the accuracy of the pressure and velocity solutions in the online GMsFEM we apply a systematic online enrichment procedure. The increase in pressure accuracy due to the online construction is inherited by the conservative flux fields and the desired saturation solutions from the coupled transport equation. Despite the fact that the coefficient of the pressure equation is dependent on the saturation which may vary in time, we may construct an approximation space using the initial coefficient where no further basis updates follow. Numerical results corresponding to four different types of heterogeneous permeability coefficients are exhibited to test the proposed methodology.
120 - Shubin Fu , Eric Chung , Tina Mai 2019
In this paper, we apply the constraint energy minimizing generalized multiscale finite element method (CEM-GMsFEM) to first solving a nonlinear poroelasticity problem. The arising system consists of a nonlinear pressure equation and a nonlinear stress equation in strain-limiting setting, where strains keep bounded while stresses can grow arbitrarily large. After time discretization of the system, to tackle the nonlinearity, we linearize the resulting equations by Picard iteration. To handle the linearized equations, we employ the CEM-GMsFEM and obtain appropriate offline multiscale basis functions for the pressure and the displacement. More specifically, first, auxiliary multiscale basis functions are generated by solving local spectral problems, via the GMsFEM. Then, multiscale spaces are constructed in oversampled regions, by solving a constraint energy minimizing (CEM) problem. After that, this strategy (with the CEM-GMsFEM) is also applied to a static case of the above nonlinear poroelasticity problem, that is, elasticity problem, where the residual based online multiscale basis functions are generated by an adaptive enrichment procedure, to further reduce the error. Convergence of the two cases is demonstrated by several numerical simulations, which give accurate solutions, with converging coarse-mesh sizes as well as few basis functions (degrees of freedom) and oversampling layers.
In this paper, we develop an iterative scheme to construct multiscale basis functions within the framework of the Constraint Energy Minimizing Generalized Multiscale Finite Element Method (CEM-GMsFEM) for the mixed formulation. The iterative procedure starts with the construction of an energy minimizing snapshot space that can be used for approximating the solution of the model problem. A spectral decomposition is then performed on the snapshot space to form global multiscale space. Under this setting, each global multiscale basis function can be split into a non-decaying and a decaying parts. The non-decaying part of a global basis is localized and it is fixed during the iteration. Then, one can approximate the decaying part via a modified Richardson scheme with an appropriately defined preconditioner. Using this set of iterative-based multiscale basis functions, first-order convergence with respect to the coarse mesh size can be shown if sufficiently many times of iterations with regularization parameter being in an appropriate range are performed. Numerical results are presented to illustrate the effectiveness and efficiency of the proposed computational multiscale method.
Fourth-order differential equations play an important role in many applications in science and engineering. In this paper, we present a three-field mixed finite-element formulation for fourth-order problems, with a focus on the effective treatment of the different boundary conditions that arise naturally in a variational formulation. Our formulation is based on introducing the gradient of the solution as an explicit variable, constrained using a Lagrange multiplier. The essential boundary conditions are enforced weakly, using Nitsches method where required. As a result, the problem is rewritten as a saddle-point system, requiring analysis of the resulting finite-element discretization and the construction of optimal linear solvers. Here, we discuss the analysis of the well-posedness and accuracy of the finite-element formulation. Moreover, we develop monolithic multigrid solvers for the resulting linear systems. Two and three-dimensional numerical results are presented to demonstrate the accuracy of the discretization and efficiency of the multigrid solvers proposed.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا