Do you want to publish a course? Click here

CKConv: Learning Feature Voxelization for Point Cloud Analysis

113   0   0.0 ( 0 )
 Added by Sungmin Woo
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Despite the remarkable success of deep learning, optimal convolution operation on point cloud remains indefinite due to its irregular data structure. In this paper, we present Cubic Kernel Convolution (CKConv) that learns to voxelize the features of local points by exploiting both continuous and discrete convolutions. Our continuous convolution uniquely employs a 3D cubic form of kernel weight representation that splits a feature into voxels in embedding space. By consecutively applying discrete 3D convolutions on the voxelized features in a spatial manner, preceding continuous convolution is forced to learn spatial feature mapping, i.e., feature voxelization. In this way, geometric information can be detailed by encoding with subdivided features, and our 3D convolutions on these fixed structured data do not suffer from discretization artifacts thanks to voxelization in embedding space. Furthermore, we propose a spatial attention module, Local Set Attention (LSA), to provide comprehensive structure awareness within the local point set and hence produce representative features. By learning feature voxelization with LSA, CKConv can extract enriched features for effective point cloud analysis. We show that CKConv has great applicability to point cloud processing tasks including object classification, object part segmentation, and scene semantic segmentation with state-of-the-art results.



rate research

Read More

The analyses relying on 3D point clouds are an utterly complex task, often involving million of points, but also requiring computationally efficient algorithms because of many real-time applications; e.g. autonomous vehicle. However, point clouds are intrinsically irregular and the points are sparsely distributed in a non-Euclidean space, which normally requires point-wise processing to achieve high performances. Although shared filter matrices and pooling layers in convolutional neural networks (CNNs) are capable of reducing the dimensionality of the problem and extracting high-level information simultaneously, grids and highly regular data format are required as input. In order to balance model performance and complexity, we introduce a novel neural network architecture exploiting local features from a manually subsampled point set. In our network, a recursive farthest point sampling method is firstly applied to efficiently cover the entire point set. Successively, we employ the k-nearest neighbours (knn) algorithm to gather local neighbourhood for each group of the subsampled points. Finally, a multiple layer perceptron (MLP) is applied on the subsampled points and edges that connect corresponding point and neighbours to extract local features. The architecture has been tested for both shape classification and segmentation using the ModelNet40 and ShapeNet part datasets, in order to show that the network achieves the best trade-off in terms of competitive performance when compared to other state-of-the-art algorithms.
Three-dimensional object recognition has recently achieved great progress thanks to the development of effective point cloud-based learning frameworks, such as PointNet and its extensions. However, existing methods rely heavily on fully connected layers, which introduce a significant amount of parameters, making the network harder to train and prone to overfitting problems. In this paper, we propose a simple yet effective framework for point set feature learning by leveraging a nonlinear activation layer encoded by Radial Basis Function (RBF) kernels. Unlike PointNet variants, that fail to recognize local point patterns, our approach explicitly models the spatial distribution of point clouds by aggregating features from sparsely distributed RBF kernels. A typical RBF kernel, e.g. Gaussian function, naturally penalizes long-distance response and is only activated by neighboring points. Such localized response generates highly discriminative features given different point distributions. In addition, our framework allows the joint optimization of kernel distribution and its receptive field, automatically evolving kernel configurations in an end-to-end manner. We demonstrate that the proposed network with a single RBF layer can outperform the state-of-the-art Pointnet++ in terms of classification accuracy for 3D object recognition tasks. Moreover, the introduction of nonlinear mappings significantly reduces the number of network parameters and computational cost, enabling significantly faster training and a deployable point cloud recognition solution on portable devices with limited resources.
Features that are equivariant to a larger group of symmetries have been shown to be more discriminative and powerful in recent studies. However, higher-order equivariant features often come with an exponentially-growing computational cost. Furthermore, it remains relatively less explored how rotation-equivariant features can be leveraged to tackle 3D shape alignment tasks. While many past approaches have been based on either non-equivariant or invariant descriptors to align 3D shapes, we argue that such tasks may benefit greatly from an equivariant framework. In this paper, we propose an effective and practical SE(3) (3D translation and rotation) equivariant network for point cloud analysis that addresses both problems. First, we present SE(3) separable point convolution, a novel framework that breaks down the 6D convolution into two separable convolutional operators alternatively performed in the 3D Euclidean and SO(3) spaces. This significantly reduces the computational cost without compromising the performance. Second, we introduce an attention layer to effectively harness the expressiveness of the equivariant features. While jointly trained with the network, the attention layer implicitly derives the intrinsic local frame in the feature space and generates attention vectors that can be integrated into different alignment tasks. We evaluate our approach through extensive studies and visual interpretations. The empirical results demonstrate that our proposed model outperforms strong baselines in a variety of benchmarks
Discrete point cloud objects lack sufficient shape descriptors of 3D geometries. In this paper, we present a novel method for aggregating hypothetical curves in point clouds. Sequences of connected points (curves) are initially grouped by taking guided walks in the point clouds, and then subsequently aggregated back to augment their point-wise features. We provide an effective implementation of the proposed aggregation strategy including a novel curve grouping operator followed by a curve aggregation operator. Our method was benchmarked on several point cloud analysis tasks where we achieved the state-of-the-art classification accuracy of 94.2% on the ModelNet40 classification task, instance IoU of 86.8 on the ShapeNetPart segmentation task, and cosine error of 0.11 on the ModelNet40 normal estimation task.
Convolution on 3D point clouds that generalized from 2D grid-like domains is widely researched yet far from perfect. The standard convolution characterises feature correspondences indistinguishably among 3D points, presenting an intrinsic limitation of poor distinctive feature learning. In this paper, we propose Adaptive Graph Convolution (AdaptConv) which generates adaptive kernels for points according to their dynamically learned features. Compared with using a fixed/isotropic kernel, AdaptConv improves the flexibility of point cloud convolutions, effectively and precisely capturing the diverse relations between points from different semantic parts. Unlike popular attentional weight schemes, the proposed AdaptConv implements the adaptiveness inside the convolution operation instead of simply assigning different weights to the neighboring points. Extensive qualitative and quantitative evaluations show that our method outperforms state-of-the-art point cloud classification and segmentation approaches on several benchmark datasets. Our code is available at https://github.com/hrzhou2/AdaptConv-master.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا