Do you want to publish a course? Click here

Microphone Array Generalization for Multichannel Narrowband Deep Speech Enhancement

171   0   0.0 ( 0 )
 Added by Siyuan Zhang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper addresses the problem of microphone array generalization for deep-learning-based end-to-end multichannel speech enhancement. We aim to train a unique deep neural network (DNN) potentially performing well on unseen microphone arrays. The microphone array geometry shapes the networks parameters when training on a fixed microphone array, and thus restricts the generalization of the trained network to another microphone array. To resolve this problem, a single network is trained using data recorded by various microphone arrays of different geometries. We design three variants of our recently proposed narrowband network to cope with the agnostic number of microphones. Overall, the goal is to make the network learn the universal information for speech enhancement that is available for any array geometry, rather than learn the one-array-dedicated characteristics. The experiments on both simulated and real room impulse responses (RIR) demonstrate the excellent across-array generalization capability of the proposed networks, in the sense that their performance measures are very close to, or even exceed the network trained with test arrays. Moreover, they notably outperform various beamforming methods and other advanced deep-learning-based methods.



rate research

Read More

Speech-related applications deliver inferior performance in complex noise environments. Therefore, this study primarily addresses this problem by introducing speech-enhancement (SE) systems based on deep neural networks (DNNs) applied to a distributed microphone architecture, and then investigates the effectiveness of three different DNN-model structures. The first system constructs a DNN model for each microphone to enhance the recorded noisy speech signal, and the second system combines all the noisy recordings into a large feature structure that is then enhanced through a DNN model. As for the third system, a channel-dependent DNN is first used to enhance the corresponding noisy input, and all the channel-wise enhanced outputs are fed into a DNN fusion model to construct a nearly clean signal. All the three DNN SE systems are operated in the acoustic frequency domain of speech signals in a diffuse-noise field environment. Evaluation experiments were conducted on the Taiwan Mandarin Hearing in Noise Test (TMHINT) database, and the results indicate that all the three DNN-based SE systems provide the original noise-corrupted signals with improved speech quality and intelligibility, whereas the third system delivers the highest signal-to-noise ratio (SNR) improvement and optimal speech intelligibility.
86 - Yanxin Hu , Yun Liu , Shubo Lv 2020
Speech enhancement has benefited from the success of deep learning in terms of intelligibility and perceptual quality. Conventional time-frequency (TF) domain methods focus on predicting TF-masks or speech spectrum, via a naive convolution neural network (CNN) or recurrent neural network (RNN). Some recent studies use complex-valued spectrogram as a training target but train in a real-valued network, predicting the magnitude and phase component or real and imaginary part, respectively. Particularly, convolution recurrent network (CRN) integrates a convolutional encoder-decoder (CED) structure and long short-term memory (LSTM), which has been proven to be helpful for complex targets. In order to train the complex target more effectively, in this paper, we design a new network structure simulating the complex-valued operation, called Deep Complex Convolution Recurrent Network (DCCRN), where both CNN and RNN structures can handle complex-valued operation. The proposed DCCRN models are very competitive over other previous networks, either on objective or subjective metric. With only 3.7M parameters, our DCCRN models submitted to the Interspeech 2020 Deep Noise Suppression (DNS) challenge ranked first for the real-time-track and second for the non-real-time track in terms of Mean Opinion Score (MOS).
The most recent deep neural network (DNN) models exhibit impressive denoising performance in the time-frequency (T-F) magnitude domain. However, the phase is also a critical component of the speech signal that is easily overlooked. In this paper, we propose a multi-branch dilated convolutional network (DCN) to simultaneously enhance the magnitude and phase of noisy speech. A causal and robust monaural speech enhancement system is achieved based on the multi-objective learning framework of the complex spectrum and the ideal ratio mask (IRM) targets. In the process of joint learning, the intermediate estimation of IRM targets is used as a way of generating feature attention factors to realize the information interaction between the two targets. Moreover, the proposed multi-scale dilated convolution enables the DCN model to have a more efficient temporal modeling capability. Experimental results show that compared with other state-of-the-art models, this model achieves better speech quality and intelligibility with less computation.
Conventional deep neural network (DNN)-based speech enhancement (SE) approaches aim to minimize the mean square error (MSE) between enhanced speech and clean reference. The MSE-optimized model may not directly improve the performance of an automatic speech recognition (ASR) system. If the target is to minimize the recognition error, the recognition results should be used to design the objective function for optimizing the SE model. However, the structure of an ASR system, which consists of multiple units, such as acoustic and language models, is usually complex and not differentiable. In this study, we proposed to adopt the reinforcement learning algorithm to optimize the SE model based on the recognition results. We evaluated the propsoed SE system on the Mandarin Chinese broadcast news corpus (MATBN). Experimental results demonstrate that the proposed method can effectively improve the ASR results with a notable 12.40% and 19.23% error rate reductions for signal to noise ratio at 0 dB and 5 dB conditions, respectively.
A method of binaural rendering from microphone array signals of arbitrary geometry is proposed. To reproduce binaural signals from microphone array recordings at a remote location, a spherical microphone array is generally used for capturing a soundfield. However, owing to the lack of flexibility in the microphone arrangement, the single spherical array is sometimes impractical for estimating a large region of a soundfield. We propose a method based on harmonic analysis of infinite order, which allows the use of arbitrarily placed microphones. In the synthesis of the estimated soundfield, a spherical-wave-decomposition-based binaural rendering is also formulated to take into consideration the distance in measuring head-related transfer functions. We develop and evaluate a composite microphone array consisting of multiple small arrays. Experimental results including those of listening tests indicate that our proposed method is robust against change in listening position in the recording area.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا