No Arabic abstract
Weakly supervised temporal action localization (WS-TAL) is a challenging task that aims to localize action instances in the given video with video-level categorical supervision. Both appearance and motion features are used in previous works, while they do not utilize them in a proper way but apply simple concatenation or score-level fusion. In this work, we argue that the features extracted from the pretrained extractor, e.g., I3D, are not the WS-TALtask-specific features, thus the feature re-calibration is needed for reducing the task-irrelevant information redundancy. Therefore, we propose a cross-modal consensus network (CO2-Net) to tackle this problem. In CO2-Net, we mainly introduce two identical proposed cross-modal consensus modules (CCM) that design a cross-modal attention mechanism to filter out the task-irrelevant information redundancy using the global information from the main modality and the cross-modal local information of the auxiliary modality. Moreover, we treat the attention weights derived from each CCMas the pseudo targets of the attention weights derived from another CCM to maintain the consistency between the predictions derived from two CCMs, forming a mutual learning manner. Finally, we conduct extensive experiments on two common used temporal action localization datasets, THUMOS14 and ActivityNet1.2, to verify our method and achieve the state-of-the-art results. The experimental results show that our proposed cross-modal consensus module can produce more representative features for temporal action localization.
Weakly supervised temporal action localization aims to detect and localize actions in untrimmed videos with only video-level labels during training. However, without frame-level annotations, it is challenging to achieve localization completeness and relieve background interference. In this paper, we present an Action Unit Memory Network (AUMN) for weakly supervised temporal action localization, which can mitigate the above two challenges by learning an action unit memory bank. In the proposed AUMN, two attention modules are designed to update the memory bank adaptively and learn action units specific classifiers. Furthermore, three effective mechanisms (diversity, homogeneity and sparsity) are designed to guide the updating of the memory network. To the best of our knowledge, this is the first work to explicitly model the action units with a memory network. Extensive experimental results on two standard benchmarks (THUMOS14 and ActivityNet) demonstrate that our AUMN performs favorably against state-of-the-art methods. Specifically, the average mAP of IoU thresholds from 0.1 to 0.5 on the THUMOS14 dataset is significantly improved from 47.0% to 52.1%.
As a challenging task of high-level video understanding, weakly supervised temporal action localization has been attracting increasing attention. With only video annotations, most existing methods seek to handle this task with a localization-by-classification framework, which generally adopts a selector to select snippets of high probabilities of actions or namely the foreground. Nevertheless, the existing foreground selection strategies have a major limitation of only considering the unilateral relation from foreground to actions, which cannot guarantee the foreground-action consistency. In this paper, we present a framework named FAC-Net based on the I3D backbone, on which three branches are appended, named class-wise foreground classification branch, class-agnostic attention branch and multiple instance learning branch. First, our class-wise foreground classification branch regularizes the relation between actions and foreground to maximize the foreground-background separation. Besides, the class-agnostic attention branch and multiple instance learning branch are adopted to regularize the foreground-action consistency and help to learn a meaningful foreground classifier. Within each branch, we introduce a hybrid attention mechanism, which calculates multiple attention scores for each snippet, to focus on both discriminative and less-discriminative snippets to capture the full action boundaries. Experimental results on THUMOS14 and ActivityNet1.3 demonstrate the state-of-the-art performance of our method. Our code is available at https://github.com/LeonHLJ/FAC-Net.
The object of Weakly-supervised Temporal Action Localization (WS-TAL) is to localize all action instances in an untrimmed video with only video-level supervision. Due to the lack of frame-level annotations during training, current WS-TAL methods rely on attention mechanisms to localize the foreground snippets or frames that contribute to the video-level classification task. This strategy frequently confuse context with the actual action, in the localization result. Separating action and context is a core problem for precise WS-TAL, but it is very challenging and has been largely ignored in the literature. In this paper, we introduce an Action-Context Separation Network (ACSNet) that explicitly takes into account context for accurate action localization. It consists of two branches (i.e., the Foreground-Background branch and the Action-Context branch). The Foreground- Background branch first distinguishes foreground from background within the entire video while the Action-Context branch further separates the foreground as action and context. We associate video snippets with two latent components (i.e., a positive component and a negative component), and their different combinations can effectively characterize foreground, action and context. Furthermore, we introduce extended labels with auxiliary context categories to facilitate the learning of action-context separation. Experiments on THUMOS14 and ActivityNet v1.2/v1.3 datasets demonstrate the ACSNet outperforms existing state-of-the-art WS-TAL methods by a large margin.
Weakly supervised temporal action localization, which aims at temporally locating action instances in untrimmed videos using only video-level class labels during training, is an important yet challenging problem in video analysis. Many current methods adopt the localization by classification framework: first do video classification, then locate temporal area contributing to the results most. However, this framework fails to locate the entire action instances and gives little consideration to the local context. In this paper, we present a novel architecture called Cascaded Pyramid Mining Network (CPMN) to address these issues using two effective modules. First, to discover the entire temporal interval of specific action, we design a two-stage cascaded module with proposed Online Adversarial Erasing (OAE) mechanism, where new and complementary regions are mined through feeding the erased feature maps of discovered regions back to the system. Second, to exploit hierarchical contextual information in videos and reduce missing detections, we design a pyramid module which produces a scale-invariant attention map through combining the feature maps from different levels. Final, we aggregate the results of two modules to perform action localization via locating high score areas in temporal Class Activation Sequence (CAS). Extensive experiments conducted on THUMOS14 and ActivityNet-1.3 datasets demonstrate the effectiveness of our method.
Weakly-supervised temporal action localization aims to localize action instances temporal boundary and identify the corresponding action category with only video-level labels. Traditional methods mainly focus on foreground and background frames separation with only a single attention branch and class activation sequence. However, we argue that apart from the distinctive foreground and background frames there are plenty of semantically ambiguous action context frames. It does not make sense to group those context frames to the same background class since they are semantically related to a specific action category. Consequently, it is challenging to suppress action context frames with only a single class activation sequence. To address this issue, in this paper, we propose an action-context modeling network termed ACM-Net, which integrates a three-branch attention module to measure the likelihood of each temporal point being action instance, context, or non-action background, simultaneously. Then based on the obtained three-branch attention values, we construct three-branch class activation sequences to represent the action instances, contexts, and non-action backgrounds, individually. To evaluate the effectiveness of our ACM-Net, we conduct extensive experiments on two benchmark datasets, THUMOS-14 and ActivityNet-1.3. The experiments show that our method can outperform current state-of-the-art methods, and even achieve comparable performance with fully-supervised methods. Code can be found at https://github.com/ispc-lab/ACM-Net