No Arabic abstract
We demonstrate non-classical cooling on the IBMq cloud quantum computer. We implement a recently proposed refrigeration protocol which relies upon indefinite causal order for its quantum advantage. We use quantum channels which, when used in a well-defined order, are useless for refrigeration. We are able to use them for refrigeration, however, by applying them in a superposition of different orders. Our protocol is by nature relatively robust to noise, and so can be implemented on this noisy platform. As far as the authors are aware, this is the first example of cloud quantum refrigeration.
In quantum mechanics events can happen in no definite causal order: in practice this can be verified by measuring a causal witness, in the same way that an entanglement witness verifies entanglement. Indefinite causal order can be observed in a quantum switch, where two operations act in a quantum superposition of the two possible orders. Here we realise a photonic quantum switch, where polarisation coherently controls the order of two operations, $hat{A}$ and $hat{B}$, on the transverse spatial mode of the photons. Our setup avoids the limitations of earlier implementations: the operations cannot be distinguished by spatial or temporal position. We show that our quantum switch has no definite causal order, by constructing a causal witness and measuring its value to be 18 standard deviations beyond the definite-order bound.
To study which are the most general causal structures which are compatible with local quantum mechanics, Oreshkov et al. introduced the notion of a process: a resource shared between some parties that allows for quantum communication between them without a predetermined causal order. These processes can be used to perform several tasks that are impossible in standard quantum mechanics: they allow for the violation of causal inequalities, and provide an advantage for computational and communication complexity. Nonetheless, no process that can be used to violate a causal inequality is known to be physically implementable. There is therefore considerable interest in determining which processes are physical and which are just mathematical artefacts of the framework. Here we make the first step in this direction, by proposing a purification postulate: processes are physical only if they are purifiable. We derive necessary conditions for a process to be purifiable, and show that several known processes do not satisfy them.
In this work, we show how Gibbs or thermal states appear dynamically in closed quantum many-body systems, building on the program of dynamical typicality. We introduce a novel perturbation theorem for physically relevant weak system-bath couplings that is applicable even in the thermodynamic limit. We identify conditions under which thermalization happens and discuss the underlying physics. Based on these results, we also present a fully general quantum algorithm for preparing Gibbs states on a quantum computer with a certified runtime and error bound. This complements quantum Metropolis algorithms, which are expected to be efficient but have no known runtime estimates and only work for local Hamiltonians.
Realization of indefinite causal order (ICO), a theoretical possibility that even causal relations between physical events can be subjected to quantum superposition, apart from its general significance for the fundamental physics research, would also enable quantum information processing that outperforms protocols in which the underlying causal structure is definite. In this paper, we start with a proposition that an observer in a state of quantum superposition of being at two different relative distances from the event horizon of a black hole, effectively resides in ICO space-time generated by the black hole. By invoking the fact that the near-horizon geometry of a Schwarzschild black hole is that of a Rindler space-time, we propose a way to simulate an observer in ICO space-time by a Rindler observer in a state of superposition of having two different proper accelerations. By extension, a pair of Rindler observers with entangled proper accelerations simulates a pair of entangled ICO observers. Moreover, these Rindler-systems might have a plausible experimental realization by means of optomechanical resonators.
Recently, the possible existence of quantum processes with indefinite causal order has been extensively discussed, in particular using the formalism of process matrices. Here we give a new perspective on this question, by establishing a direct connection to the theory of multi-time quantum states. Specifically, we show that process matrices are equivalent to a particular class of pre- and post- selected quantum states. This offers a new conceptual point of view to the nature of process matrices. Our results also provide an explicit recipe to experimentally implement any process matrix in a probabilistic way, and allow us to generalize some of the previously known properties of process matrices. Furthermore we raise the issue of the difference between the notions of indefinite temporal order and indefinite causal order, and show that one can have indefinite causal order even with definite temporal order.