No Arabic abstract
We present optical spectroscopy together with ultraviolet, optical and near-infrared photometry of SN 2019hcc, which resides in a host galaxy at redshift 0.044, displaying a sub-solar metallicity. The supernova spectrum near peak epoch shows a `w shape at around 4000 {AA} which is usually associated with O II lines and is typical of Type I superluminous supernovae. SN 2019hcc post-peak spectra show a well-developed H alpha P-Cygni profile from 19 days past maximum and its light curve, in terms of its absolute peak luminosity and evolution, resembles that of a fast-declining Hydrogen-rich supernova (SN IIL). The object does not show any unambiguous sign of interaction as there is no evidence of narrow lines in the spectra or undulations in the light curve. Our tardis spectral modelling of the first spectrum shows that Carbon, Nitrogen and Oxygen (CNO) at 19000 K reproduce the `w shape and suggests that a combination of non-thermally excited CNO and metal lines at 8000 K could reproduce the feature seen at 4000 {AA}. The Bolometric light curve modelling reveals that SN 2019hcc could be fit with a magnetar model, showing a relatively strong magnetic field (B > 3 x 10^14 G), which matches the peak luminosity and rise time without powering up the light curve to superluminous luminosities. The high-energy photons produced by the magnetar would then be responsible for the detected O II lines. As a consequence, SN 2019hcc shows that a `w shape profile at around 4000 {AA}, usually attributed to O II, is not only shown in superluminous supernovae and hence it should not be treated as the sole evidence of the belonging to such a supernova type.
We present the photometry and spectroscopy of SN 2015an, a Type II Supernova (SN) in IC 2367. The recombination phase of the SN lasts up to $sim$120 d, with a decline rate of 1.24 mag/100d, higher than the typical SNe IIP. The SN exhibits bluer colours than most SNe II, indicating higher ejecta temperatures. The absolute $V$-band magnitude of SN 2015an at 50 d is $-$16.83$pm$0.04 mag, pretty typical for SNe II. However, the $^{56}$Ni mass yield, estimated from the tail $V$-band light curve to be 0.021$pm$0.010 M$_odot$, is comparatively low. The spectral properties of SN 2015an are atypical, with low H$alpha$ expansion velocity and presence of high velocity component of H$alpha$ at early phases. Moreover, the continuum exhibits excess blue flux up to $sim$50 d, which is interpreted as a progenitor metallicity effect. The high velocity feature indicates ejecta-circumstellar material interaction at early phases. The semi-analytical modelling of the bolometric light curve yields a total ejected mass of $sim$12 M$_odot$, a pre-supernova radius of $sim$388~R$_odot$ and explosion energy of $sim$1.8 foe.
We present high-cadence, comprehensive data on the nearby ($Dsimeq33,rm{Mpc}$) Type II SN 2017ahn, discovered within $sim$1 day of explosion, from the very early phases after explosion to the nebular phase. The observables of SN 2017ahn show a significant evolution over the $simeq470,rm{d}$ of our follow-up campaign, first showing prominent, narrow Balmer lines and other high-ionization features purely in emission (i.e. flash spectroscopy features), which progressively fade and lead to a spectroscopic evolution similar to that of more canonical Type II supernovae. Over the same period, the decline of the light curves in all bands is fast, resembling the photometric evolution of linearly declining H-rich core-collapse supernovae. The modeling of the light curves and early flash spectra suggest a complex circumstellar medium surrounding the progenitor star at the time of explosion, with a first dense shell produced during the very late stages of its evolution being swept up by the rapidly expanding ejecta within the first $sim6,rm{d}$ of the supernova evolution, while signatures of interaction are observed also at later phases. Hydrodynamical models support the scenario in which linearly declining Type II supernovae are predicted to arise from massive yellow super/hyper giants depleted of most of their hydrogen layers.
We present high-cadence ultraviolet (UV), optical, and near-infrared (NIR) data on the luminous Type II-P supernova SN 2017gmr from hours after discovery through the first 180 days. SN 2017gmr does not show signs of narrow, high-ionization emission lines in the early optical spectra, yet the optical lightcurve evolution suggests that an extra energy source from circumstellar medium (CSM) interaction must be present for at least 2 days after explosion. Modeling of the early lightcurve indicates a ~500R$_{odot}$ progenitor radius, consistent with a rather compact red supergiant, and late-time luminosities indicate up to 0.130 $pm$ 0.026 M$_{odot}$ of $^{56}$Ni are present, if the lightcurve is solely powered by radioactive decay, although the $^{56}$Ni mass may be lower if CSM interaction contributes to the post-plateau luminosity. Prominent multi-peaked emission lines of H$alpha$ and [O I] emerge after day 154, as a result of either an asymmetric explosion or asymmetries in the CSM. The lack of narrow lines within the first two days of explosion in the likely presence of CSM interaction may be an example of close, dense, asymmetric CSM that is quickly enveloped by the spherical supernova ejecta.
We present $81$ near-infrared (NIR) spectra of $30$ Type II supernovae (SNe II) from the Carnegie Supernova Project-II (CSP-II), the largest such dataset published to date. We identify a number of NIR features and characterize their evolution over time. The NIR spectroscopic properties of SNe II fall into two distinct groups. This classification is first based on the strength of the He I $lambda1.083,mu$m absorption during the plateau phase; SNe II are either significantly above (spectroscopically strong) or below $50$ angstroms (spectroscopically weak) in pseudo equivalent width. However between the two groups, other properties, such as the timing of CO formation and the presence of Sr II, are also observed. Most surprisingly, the distinct weak and strong NIR spectroscopic classes correspond to SNe II with slow and fast declining light curves, respectively. These two photometric groups match the modern nomenclature of SNe IIP and IIL. Including NIR spectra previously published, 18 out of 19 SNe II follow this slow declining-spectroscopically weak and fast declining-spectroscopically strong correspondence. This is in apparent contradiction to the recent findings in the optical that slow and fast decliners show a continuous distribution of properties. The weak SNe II show a high-velocity component of helium that may be caused by a thermal excitation from a reverse-shock created by the outer ejecta interacting with the red supergiant wind, but the origin of the observed dichotomy is not understood. Further studies are crucial in determining whether the apparent differences in the NIR are due to distinct physical processes or a gap in the current data set.
We present our analysis of the Type II supernova DLT16am (SN~2016ija). The object was discovered during the ongoing $rm{D}<40,rm{Mpc}$ (DLT40) one day cadence supernova search at $rsim20.1,rm{mag}$ in the `edge-on nearby ($D=20.0pm1.9,rm{Mpc}$) galaxy NGC~1532. The subsequent prompt and high-cadenced spectroscopic and photometric follow-up revealed a highly extincted transient, with $E(B-V)=1.95pm0.15,rm{mag}$, consistent with a standard extinction law with $R_V=3.1$ and a bright ($M_V=-18.49pm0.65,rm{mag}$) absolute peak-magnitude. The comparison of the photometric features with those of large samples of Type II supernovae reveals a fast rise for the derived luminosity and a relatively short plateau phase, with a slope of $S_{50V}=0.84pm0.04,rm{mag}/50,rm{d}$ consistent with the photometric properties typical of those of fast declining Type II supernovae. Despite the large uncertainties on the distance and the extinction in the direction of DLT16am, the measured photospheric expansion velocity and the derived absolute $V$-band magnitude at $sim50,rm{d}$ after the explosion match the existing luminosity-velocity relation for Type II supernovae.