Do you want to publish a course? Click here

HRegNet: A Hierarchical Network for Large-scale Outdoor LiDAR Point Cloud Registration

87   0   0.0 ( 0 )
 Added by Fan Lu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Point cloud registration is a fundamental problem in 3D computer vision. Outdoor LiDAR point clouds are typically large-scale and complexly distributed, which makes the registration challenging. In this paper, we propose an efficient hierarchical network named HRegNet for large-scale outdoor LiDAR point cloud registration. Instead of using all points in the point clouds, HRegNet performs registration on hierarchically extracted keypoints and descriptors. The overall framework combines the reliable features in deeper layer and the precise position information in shallower layers to achieve robust and precise registration. We present a correspondence network to generate correct and accurate keypoints correspondences. Moreover, bilateral consensus and neighborhood consensus are introduced for keypoints matching and novel similarity features are designed to incorporate them into the correspondence network, which significantly improves the registration performance. Besides, the whole network is also highly efficient since only a small number of keypoints are used for registration. Extensive experiments are conducted on two large-scale outdoor LiDAR point cloud datasets to demonstrate the high accuracy and efficiency of the proposed HRegNet. The project website is https://ispc-group.github.io/hregnet.



rate research

Read More

Learning on 3D scene-based point cloud has received extensive attention as its promising application in many fields, and well-annotated and multisource datasets can catalyze the development of those data-driven approaches. To facilitate the research of this area, we present a richly-annotated 3D point cloud dataset for multiple outdoor scene understanding tasks and also an effective learning framework for its hierarchical segmentation task. The dataset was generated via the photogrammetric processing on unmanned aerial vehicle (UAV) images of the National University of Singapore (NUS) campus, and has been point-wisely annotated with both hierarchical and instance-based labels. Based on it, we formulate a hierarchical learning problem for 3D point cloud segmentation and propose a measurement evaluating consistency across various hierarchies. To solve this problem, a two-stage method including multi-task (MT) learning and hierarchical ensemble (HE) with consistency consideration is proposed. Experimental results demonstrate the superiority of the proposed method and potential advantages of our hierarchical annotations. In addition, we benchmark results of semantic and instance segmentation, which is accessible online at https://3d.dataset.site with the dataset and all source codes.
165 - Zhi Deng , Yuxin Yao , Bailin Deng 2021
The performance of surface registration relies heavily on the metric used for the alignment error between the source and target shapes. Traditionally, such a metric is based on the point-to-point or point-to-plane distance from the points on the source surface to their closest points on the target surface, which is susceptible to failure due to instability of the closest-point correspondence. In this paper, we propose a novel metric based on the intersection points between the two shapes and a random straight line, which does not assume a specific correspondence. We verify the effectiveness of this metric by extensive experiments, including its direct optimization for a single registration problem as well as unsupervised learning for a set of registration problems. The results demonstrate that the algorithms utilizing our proposed metric outperforms the state-of-the-art optimization-based and unsupervised learning-based methods.
Point clouds can be represented in many forms (views), typically, point-based sets, voxel-based cells or range-based images(i.e., panoramic view). The point-based view is geometrically accurate, but it is disordered, which makes it difficult to find local neighbors efficiently. The voxel-based view is regular, but sparse, and computation grows cubically when voxel resolution increases. The range-based view is regular and generally dense, however spherical projection makes physical dimensions distorted. Both voxel- and range-based views suffer from quantization loss, especially for voxels when facing large-scale scenes. In order to utilize different views advantages and alleviate their own shortcomings in fine-grained segmentation task, we propose a novel range-point-voxel fusion network, namely RPVNet. In this network, we devise a deep fusion framework with multiple and mutual information interactions among these three views and propose a gated fusion module (termed as GFM), which can adaptively merge the three features based on concurrent inputs. Moreover, the proposed RPV interaction mechanism is highly efficient, and we summarize it into a more general formulation. By leveraging this efficient interaction and relatively lower voxel resolution, our method is also proved to be more efficient. Finally, we evaluated the proposed model on two large-scale datasets, i.e., SemanticKITTI and nuScenes, and it shows state-of-the-art performance on both of them. Note that, our method currently ranks 1st on SemanticKITTI leaderboard without any extra tricks.
To eliminate the problems of large dimensional differences, big semantic gap, and mutual interference caused by hybrid features, in this paper, we propose a novel Multi-Features Guidance Network for partial-to-partial point cloud registration(MFG). The proposed network mainly includes four parts: keypoints feature extraction, correspondences searching, correspondences credibility computation, and SVD, among which correspondences searching and correspondence credibility computation are the cores of the network. Unlike the previous work, we utilize the shape features and the spatial coordinates to guide correspondences search independently and fusing the matching results to obtain the final matching matrix. In the correspondences credibility computation module, based on the conflicted relationship between the features matching matrix and the coordinates matching matrix, we score the reliability for each correspondence, which can reduce the impact of mismatched or non-matched points. Experimental results show that our network outperforms the current state-of-the-art while maintaining computational efficiency.
118 - Haobo Jiang , Yaqi Shen , Jin Xie 2021
In this paper, by modeling the point cloud registration task as a Markov decision process, we propose an end-to-end deep model embedded with the cross-entropy method (CEM) for unsupervised 3D registration. Our model consists of a sampling network module and a differentiable CEM module. In our sampling network module, given a pair of point clouds, the sampling network learns a prior sampling distribution over the transformation space. The learned sampling distribution can be used as a good initialization of the differentiable CEM module. In our differentiable CEM module, we first propose a maximum consensus criterion based alignment metric as the reward function for the point cloud registration task. Based on the reward function, for each state, we then construct a fused score function to evaluate the sampled transformations, where we weight the current and future rewards of the transformations. Particularly, the future rewards of the sampled transforms are obtained by performing the iterative closest point (ICP) algorithm on the transformed state. By selecting the top-k transformations with the highest scores, we iteratively update the sampling distribution. Furthermore, in order to make the CEM differentiable, we use the sparsemax function to replace the hard top-$k$ selection. Finally, we formulate a Geman-McClure estimator based loss to train our end-to-end registration model. Extensive experimental results demonstrate the good registration performance of our method on benchmark datasets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا