We perform the quantum magnetotransport measurements and first-principles calculations on high quality single crystals of SmAlSi, a new topological Weyl semimetal candidate. At low temperatures, SmAlSi exhibits large non-saturated magnetoresistance (MR)~5200% (at 2 K, 48 T) and prominent Shubnikov-de Haas (SdH) oscillations, where MRs follow the power-law field dependence with exponent 1.52 at low fields ({mu}0H < 15 T) and linear behavior 1 under high fields ({mu}0H > 18 T). The analysis of angle dependent SdH oscillations reveal two fundamental frequencies originated from the Fermi surface (FS) pockets with non-trivial {pi} Berry phases, small cyclotron mass and electron-hole compensation with high mobility at 2 K. In combination with the calculated nontrivial electronic band structure, SmAlSi is proposed to be a paradigm for understanding the Weyl fermions in the topological materials.