No Arabic abstract
Cellular connected unmanned aerial vehicle (UAV) has been identified as a promising paradigm and attracted a surge of research interest recently. Although the nearly line-of-sight (LoS) channels are favorable to receive higher powers, UAV can in turn cause severe interference to each other and to any other users in the same frequency band. In this contribution, we focus on the uplink communications of cellular-connected UAV. To cope with the severe interference among UAV-UEs, several different scheduling and power control algorithms are proposed to optimize the spectrum efficiency (SE) based on the geometrical programming (GP) principle together with the successive convex approximation (SCA) technique. The proposed schemes include maximizing the sum SE of UAVs, maximizing the minimum SE of UAVs, etc., applied in the frequency domain and/or the time domain. Moreover, the quality of service (QoS) constraint and the uplink single-carrier (SC) constraint are also considered. The performances of these power and resource allocation algorithms are evaluated via extensive simulations in both full buffer transmission mode and bursty traffic mode. Numerical results show that the proposed algorithms can effectively enhance the uplink SEs of cellular-connected UAVs.
We consider a cellular network deployment where UAV-to-UAV (U2U) transmit-receive pairs share the same spectrum with the uplink (UL) of cellular ground users (GUEs). For this setup, we focus on analyzing and comparing the performance of two spectrum sharing mechanisms: (i) underlay, where the same time-frequency resources may be accessed by both UAVs and GUEs, resulting in mutual interference, and (ii)overlay, where the available resources are divided into orthogonal portions for U2U and GUE communications. We evaluate the coverage probability and rate of both link types and their interplay to identify the best spectrum sharing strategy. We do so through an analytical framework that embraces realistic height-dependent channel models, antenna patterns, and practical power control mechanisms. For the underlay, we find that although the presence of U2U direct communications may worsen the uplink performance of GUEs, such effect is limited as base stations receive the power-constrained UAV signals through their antenna sidelobes. In spite of this, our results lead us to conclude that in urban scenarios with a large number of UAV pairs, adopting an overlay spectrum sharing seems the most suitable approach for maintaining a minimum guaranteed rate for UAVs and a high GUE UL performance.
In this paper, we study the path planning for a cellular-connected unmanned aerial vehicle (UAV) to minimize its flying distance from given initial to final locations, while ensuring a target link quality in terms of the large-scale channel gain with each of its associated ground base stations (GBSs) during the flight. To this end, we propose the use of radio map that provides the information on the large-scale channel gains between each GBS and uniformly sampled locations on a three-dimensional (3D) grid over the region of interest, which are assumed to be time-invariant due to the generally static and large-size obstacles therein (e.g., buildings). Based on the given radio maps of the GBSs, we first obtain the optimal UAV path by solving an equivalent shortest path problem (SPP) in graph theory. To reduce the computation complexity of the optimal solution, we further propose a grid quantization method whereby the grid points in each GBSs radio map are more coarsely sampled by exploiting the spatial channel correlation over neighboring grids. Then, we solve the approximate SPP over the reduced-size radio map (graph) more efficiently. Numerical results show that the proposed solutions can effectively minimize the flying distance of the UAV subject to its communication quality constraint. Moreover, a flexible trade-off between performance and complexity can be achieved by adjusting the quantization ratio for the radio map.
Future wireless communications are largely inclined to deploy a massive number of antennas at the base stations (BS) by exploiting energy-efficient and environmentally friendly technologies. An emerging technology called dynamic metasurface antennas (DMAs) is promising to realize such massive antenna arrays with reduced physical size, hardware cost, and power consumption. This paper aims to optimize the energy efficiency (EE) performance of DMAs-assisted massive MIMO uplink communications. We propose an algorithmic framework for designing the transmit precoding of each multi-antenna user and the DMAs tuning strategy at the BS to maximize the EE performance, considering the availability of the instantaneous and statistical channel state information (CSI), respectively. Specifically, the proposed framework includes Dinkelbachs transform, alternating optimization, and deterministic equivalent methods. In addition, we obtain a closed-form solution to the optimal transmit signal directions for the statistical CSI case, which simplifies the corresponding transmission design. The numerical results show good convergence performance of our proposed algorithms as well as considerable EE performance gains of the DMAs-assisted massive MIMO uplink communications over the baseline schemes.
In this paper, we study the trajectory design for a cellular-connected unmanned aerial vehicle (UAV) with given initial and final locations, while communicating with the ground base stations (GBSs) along its flight. We consider delay-limited communications between the UAV and its associated GBSs, where a given signal-to-noise ratio (SNR) target needs to be satisfied at the receiver. However, in practice, due to various factors such as quality-of-service (QoS) requirement, GBSs availability and UAV mobility constraints, the SNR target may not be met at certain time periods during the flight, each termed as an outage duration. In this paper, we aim to optimize the UAV trajectory to minimize its mission completion time, subject to a constraint on the maximum tolerable outage duration in its flight. To tackle this non-convex problem, we first transform it into a more tractable form and thereby reveal some useful properties of the optimal trajectory solution. Based on these properties, we then further simplify the problem and propose efficient algorithms to check the feasibility of the problem as well as to obtain its optimal and high-quality suboptimal solutions, by leveraging graph theory and convex optimization techniques. Numerical results show that our proposed trajectory designs outperform the conventional method based on dynamic programming, in terms of both performance and complexity.
A K-tier heterogeneous mmWave uplink cellular network with clustered user equipments (UEs) is considered in this paper. In particular, UEs are assumed to be clustered around small-cell base stations (BSs) according to a Gaussian distribution, leading to the Thomas cluster process based modeling. Specific and practical line-of-sight (LOS) and non-line-of-sight (NLOS) models are adopted with different parameters for different tiers. The probability density functions (PDFs) and complementary cumulative distribution functions (CCDFs) of different distances from UEs to BSs are characterized. Coupled association strategy and largest long-term averaged biased received power criterion are considered, and general expressions for association probabilities are provided. Following the identification of the association probabilities, the Laplace transforms of the inter-cell interference and the intra-cluster interference are characterized. Using tools from stochastic geometry, general expressions of the SINR coverage probability are provided. As extensions, fractional power control is incorporated into the analysis, tractable closed-form expressions are provided for special cases, and average ergodic spectral efficiency is analyzed. Via numerical and simulation results, analytical characterizations are confirmed and the impact of key system and network parameters on the performance is identified.