Balmer continuum enhancement detected in a mini flare observed with IRIS


Abstract in English

Optical and near-UV continuum emissions in flares contribute substantially to flare energy budget. Two mechanisms play an important role for continuum emission in flares: hydrogen recombination after sudden ionization at chromospheric layers and transportation of the energy radiatively from the chromosphere to lower layers in the atmosphere, the so called back-warming. The aim of the paper is to disentangle between these two mechanisms for the excess of Balmer continuum observed in a flare. Methods. We combine the observations of Balmer continuum obtained with IRIS (spectra and SJIs 2832 A) and hard X-ray (HXR) emission detected by FERMI Gamma Burst Monitor (GBM) during a mini flare. Calibrated Balmer continuum is compared to non-LTE radiative transfer flare models and radiated energy is estimated. Assuming thick target HXR emission, we calculate the energy of non-thermal electrons detected by FERMI GBM and compare it to the radiated energy. The favorable argument of a relationship between the Balmer continuum excess and the HXR emission is that there is a good time coincidence between both of them. In addition, the shape of the maximum brightness in the 2832 SJIs, which is mainly due to this Balmer continuum excess, is similar to the FERMI/GBM light curve. The electron-beam flux estimated from FERMI/GBM is consistent with the beam flux required in non-LTE radiative transfer models to get the excess of Balmer continuum emission observed in the IRIS spectra. The low energy input by non thermal electrons above 20 keV is sufficient to produce the enhancement of Balmer continuum emission. This could be explained by the topology of the reconnection site. The reconnection starts in a tiny bald patch region which is transformed dynamically in a X-point current sheet. The size of the interacting region would be under the spatial resolution of the instrument.

Download